12+  Свидетельство СМИ ЭЛ № ФС 77 - 70917
Лицензия на образовательную деятельность №0001058
Пользовательское соглашение     Контактная и правовая информация
 
Педагогическое сообщество
УРОК.РФУРОК
 
Материал опубликовала
Князева Наталья Борисовна12774
Князева Наталья Борисовна. Стаж работы 28 лет. Категория - высшая
Россия, Пензенская обл., Пенза
Материал размещён в группе «Учителя физики»
50

Урок «Преломление света. Полное отражение»



Методическая разработка урока по физике на тему «Преломление света. Полное отражение»,

Преподаватель ГАПОУ ПО «Пензенский многопрофильный колледж» отделения строительства Князева Наталья Борисовна

 

Цели:

  • Изучить явление преломления светового луча на границе раздела двух прозрачных сред; сформулировать закон преломления света; объяснить физический смысл показателя преломления на основании принципа Гюйгенса; познакомить обучающихся с явлением полного отражения света и его практическим применением.
  • Продолжать формирование общих компетенций студентов (осуществлять поиск и использование информации, ставить цели), стремления к достижению результата, к познанию окружающего нас мира, правильного научного мировоззрения.
  • Развивать навыки логического мышления, умение анализировать и делать выводы, устойчивый интерес к предмету.

 

Оборудование:

  • Персональный компьютер, проектор, экран, мультимедийные диски «Открытая физика 2.5» и “Teach Pro: Физика”, оптическая шайба, источник постоянного тока, стеклянная пластина.
  • Презентация "Преломление света. Полное отражение"

Здесь будет файл: /data/edu/files/e1460879012.ppt (Геометрическая оптика)

 

Ход урока:

Организационный момент.

Проверка домашнего задания (решение домашней задачи у доски и фронтальное тестирование).


Здесь будет файл: (тест "Отражение света")

Изучение нового материала по теме «Преломление света. Полное отражение»

План:

Закрепление изученного на уроке материала:

  1. Фронтальный эксперимент – монета на дне сосуда.
  2. Опыты Птолемея.
  3. Закон преломления.
  4. Показатель преломления.
  5. Явление преломления света в природе.
  6. Полное внутреннее отражение.

Решение задач.

Кажущаяся глубина водоема 3 м. Какова его истинная глубина? Показатель преломления воды 1, 33.

Луч света переходит из стекла в воду. Угол падения луча на границу раздела этих двух сред 400. Определите угол преломления луча.

Почему оклейку обоев в комнате ведут от окна?

Найдите скорость распространения света в воде, если ее показатель преломления 1,33?

Определите предельный угол полного отражения для перехода изо льда в воздух. (самостоятельно – 1 вариант)

Предельный угол полного отражения для алмаза 240. Чему равна скорость распространения света в алмазе? (самостоятельно – 2 вариант)

 

Запись домашнего задания: Касьянов В.А. Физика 11кл. § 56 «Преломление волн», выписать из учебника необходимые определения, формулировки в тетрадь, стр. 227 задачи № 1 и 3.

Подведение итогов урока.

 

Содержание урока:

Сегодня на уроке мы ответим на вопрос – что происходит со световым лучом внутри оконного стекла?

Давайте вначале рассмотрим, что происходит на границе между воздухом и водой. Ведь и стекло и вода прозрачны. Разве вам не казалось, что ложка, опущенная в стакан с водой, будто бы переломилась? «Ломаются» и шест, воткнутый в дно реки или озера, и даже наши руки, опущенные в ванну с водой.

Проделаем простейший опыт Возьмем пластиковый стакан с непрозрачными стенками. Положим на дно стакана монетку. Поставьте стакан на стол и сядьте так, чтобы видеть часть дна, но не видеть монету. Теперь осторожно наливайте в стакан воду. В какой-то момент монетка начнет «всплывать». Заполнив стакан водой вы сможете увидеть ее целиком.

Этот опыт демонстрирует явление преломления света на границе вода – воздух. Он был описан еще Евклидом в ІІІ в. до н. э. «Если какой – либо предмет поместить на дно сосуда и удалить сосуд от глаз наблюдателя настолько, что предмет не будет виден, то он вновь станет виден на этом расстоянии, если сосуд залить водой».

 Открытию закона преломления предшествовали длительные исследования. Их начало следует отнести ко II в. н. э., когда Птолемей пытался экспериментально установить зависимость между углами, которые составляют падающий и преломленный лучи с перпендикуляром к границе раздела сред.

Птолемей применял диск, разделенный по окружности на 360 частей. В центре диска крепились концы двух линеек, которые можно было поворачивать вокруг точки крепления. Диск наполовину погружали в воду, а линейки устанавливали таким образом, чтобы при взгляде вдоль верхней казалось, что обе линейки составляют прямую линию. Птолемей устанавливал верхнюю линейку в разных положениях и экспериментально отыскивал соответствующее положение нижней линейки. Из измерений Птолемея следовало, отношение Sin α / Sin γ лежит в интервале значений от 1,25 до 1,34, т.е. не совсем постоянно. Таким образом, Птолемею не удалось найти правильный закон преломления света.

Прошло более четырех веков, прежде чем закон преломления был, наконец, установлен. В 1626 г. Скончался голландский математик Снеллиус. В его бумагах была найдена работа, в которой был фактически сформулирован закон преломления.

Однако по неизвестным причинам Снеллиус не опубликовал свою работу. Первая публикация, содержащая формулировку закона преломления принадлежит не Снеллиусу, а известному французскому ученому Рене Декарту. Он вывел закон преломления теоретически - на основе предположения о различии скорости света в различных средах.

Выведем закон преломления света из принципа Гюйгенса. Пусть на поверхность А1А4, разделяющую две среды, например воздух и воду, падает плоская волна, характеризующаяся углом падения α. Обозначим через υ1 скорость света в первой среде (в воздухе), а через υ2 – во второй (в воде). Как правильно полагал Гюйгенс, υ1 > υ2. На рис 3 стрелками показаны четыре световых луча, А1В1 – положение волнового фронта в момент, когда луч 1 достигает границы раздела сред. В тот же момент точка А1 превращается, по Гюйгенсу, в источник вторичной сферической волны. Заметим, что эта волна распространяется как в первой среде, так и во второй, порождая соответственно отраженный и преломленный световые пучки; ограничимся рассмотрением только преломления.

  

 

 

Луч падающий, луч преломленный и перпендикуляр, восстановленный в точке падения луча лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред.

Максимальная скорость распространения взаимодействия – это скорость света в вакууме. В любой среде свет распространяется с меньшей скоростью. Физической величиной, характеризующей уменьшение скорости распространения света в среде по сравнению со скоростью света в вакууме, является абсолютный показатель преломления среды.

  Чем больше абсолютный показатель преломления среды, тем меньше скорость распространения света в ней. При сравнении абсолютных показателей преломления двух сред используют понятие оптической плотности среды. Оптически более плотная среда – среда с большим показателем преломления, а оптически менее плотная среда – среда с меньшим показателем преломления.  

Если п1 – абсолютный показатель преломления первой среды, а п2 - абсолютный показатель преломления второй среды, то можно записать закон преломления в следующем виде

  Если луч света падает из оптически менее плотной среды, то угол преломления оказывается меньше угла падения.  

Закон преломления света подчиняется принципу наименьшего времени. Представим себе следующую ситуацию: вы находитесь на береге и видите, как с лодки в воду падает человек. Он начинает кричать. Вы приходите ему на помощь. В каком случае вы быстрее доберетесь до тонущего человека: двигаясь по прямой АВ или по ломаной АОВ?

Интересно, что такое явление наблюдается в отсутствие какой – либо облачности на горизонте. Если в это время подняться на вершину холма или на крышу многоэтажного здания, то можно наблюдать еще более странную картину: теперь Солнце заходит за линию горизонта, но при этом солнечный диск оказывается как бы перерезанным горизонтальной «слепой полосой», положение которой по отношению к линии горизонта сохраняется неизменным.

ассмотрим явление преломления света в природе, а именно рефракцию света в атмосфере. Атмосфера представляет собой оптически неоднородную среду, ее плотность изменяется с высотой. По этой причине показатель преломления изменяется от точки к точки. Рефракция света в атмосфере может приводить к обманам зрения. Например, можно наблюдать предметы находящиеся за горизонтом.

Если бы у нашей планеты не было воздушной оболочки, то мгновенно с заходом Солнца за горизонт наступала бы на Землю тьма, и не было бы вечера, а после ночи внезапно наступал бы день и не было бы утра.

На показатель преломления атмосферы иногда влияют случайные факторы: конвекционные потоки земли, ветра, степень влажности, температуры воздуха и т.д. Так, иногда Солнце кажется заходящим не за линию горизонта, а за некоторую невидимую линию, находящуюся над горизонтом.

Такая картина наблюдается, если воздух около самой Земли оказывается холодным, а выше располагается слой относительно теплого воздуха. (С высотой показатель преломления уменьшается скачком.)

Итак, сегодня и на предыдущем уроке мы познакомились с явлениями отражения и преломления света. Если пучок света переходит из оптически менее плотной среды в оптически более плотную (п2 > п1), то при любом угле падения существует как отраженный, так и преломленный пучки света. Пустим луч света в обратном направлении из оптически более плотной среды в менее плотную. Угол падения в этом случае меньше угла преломления. С ростом угла падения возрастает и угол преломления, а так же интенсивность преломленного луча.

При некотором значении α0 угол преломления достигает максимального значения 90 0.

 Угол α0 называют предельным углом. Для стекла он равен 420. Если угол падения больше α0, преломление света во вторую среду прекращается, свет полностью отражается от границе раздела, как от зеркала – возникает явление полного внутреннего отражения.

Полное внутреннее отражение – явление отражения света от оптически менее плотной среды, при которой преломление отсутствует, а интенсивность отраженного света практически равна интенсивности падающего.

Это явление используется в световолоконной оптике. Волоконная оптика – это система передачи оптических изображений с помощью световодов. Их используют в медицине (эндоскопы - зонды), в системах передачи информации, в призматических биноклях, перископах, зеркальных фотоаппаратах и световращателях (катафотах).

Примечание: на уроке учитель делает на доске только опорный конспект для студентов. При подготовке домашнего задания студенты дополняют его необходимым конспектом из учебника.


Здесь будет файл: /data/edu/files/g1460879088.doc (Дополнительный материал к уроку)

Опубликовано в группе «Учителя физики»


Комментарии (1)

Князева Наталья Борисовна, 28.04.16 в 19:46 0Ответить Пожаловаться
Строку "Закрепление изученного на уроке материала" читать после пункта 6. И еще потерялась ссылка на тест.
Чтобы написать комментарий необходимо авторизоваться.