12+  Свидетельство СМИ ЭЛ № ФС 77 - 70917
Лицензия на образовательную деятельность №0001058
Пользовательское соглашение     Контактная и правовая информация
 
Педагогическое сообщество
УРОК.РФУРОК
 
Материал опубликовала
Баликоева Альбина Мурзаевна1485
Россия, Северная Осетия-Алания респ., Владикавказ

Задания по астрономии ЕГЭ физика 2021

В помощь ученику для подготовки заданий по астрономии ЕГЭ физика 2021 но№№мер 24 Задания по Астрономии ЕГЭ физика 2021

Задания №24 по астрономии условно можно разделить на 10 типов: Все о звездах. Всё о планетах Спутники планет. Всё об астероидах. Всё о кометах и прочих космических объектах. Законы Кеплера и орбиты космических объектов. Смена времён года. Плотность планет Ускорение свободного падения на других планетах. Космические скорости.

Ещё в начале 20 века в Гарварде была придумана классификация, позднее она дополнялась, но главная идея осталась — спектральные типы обозначаются буквами латинского алфавита. Последовательность выглядит следующим образом: Q — P — W — O —B — A — F — G — K — M Первые три буквы (QPW) не рассматривают в заданиях, а последовательность (OBAFGKM) надо запомнить. Сделать это легко, астрономы-учёные уже давно придумали мнемонические образы как на русском, так и на английском языках. В оригинале звучит так: Oh, Be A Fine Girl, Kiss Me. В русском эквиваленте вариант такой: Один Бритый Англичанин Финики Жевал Как Морковь. И последний вариант, тоже русский, но для упрощённого детского восприятия (читается в обратном порядке):  Морковь Кажется Жирафу Фруктом, А Бегемоту Овощем.

Класс O – самый высокий класс в этом списке, а класс  M – самый низкий. Чем выше класс, в этом списке, тем звезды горячее, больше и ярче

Класс O Звёзды имеют очень высокую температуру (30-60 тысяч К), о чём свидетельствует большая интенсивность ультрафиолетовой области. Звёзды имеют ярко выраженный голубой оттенок. Больше всего тёмных спектральных линий в крайней левой фиолетового цвета части спектра (если смотреть на изображение спектра выше). Типичные звёзды этого класса — Дзета в созвездии Корма, Лямбда Ориона, Кси Персея Класс B Температура поверхности звезды колеблется в диапазоне от 10 до 30 тысяч К. Имеют голубовато-белый цвет. Самый типичный представитель — звезда Спика (в созвездии Дева). Также Ригель и Эпсилон Ориона. Класс AТемпература от 7500 до 10000 К. Белого цвета. Линии водорода достигают наибольшей интенсивности. Яркими представителями являются звёзды Вега и Сириус. Класс F Температура лежит в диапазоне 6000 — 7500 К. Происходит ослабление линий водорода и усиление линий ионизированных металлов: кальций, титан, железо. Цвет ярко-жёлтый. Знаменитые звёзды — Процион в созвездии Малый Пёс и Канопус в созвездии Киль. Класс G Температура на поверхности равна 5000 — 6000 К. Содержится большое количество ионизированного кальция. Цвет жёлтый. Звезда Солнце относится к этому классу. Класс K Температура уже не превышает 5 тысяч К и лежит в диапазоне от 3500 до 5000 К. Цвет светло-красный. К этому классу относятся звёзды Арктур в созвездии Волопас и Альдебаран в Тельце. Класс M Звёзды с минимальной температурой равной 2000 — 3500 К. На спектре линии металлов ослабевают. Цвет ярко-красный, иногда тёмно-оранжевый. К этому классу относится знаменитая звезда Бетельгейзе в созвездии Орион

Иногда встречаются вопросы на определение плотности звезды: чем больше звезда, тем более она разряжена, плотность меньше. Под главной последовательностью внизу находятся субкарлики – красные звезды малой светимости. Они имеют огромную плотность. Между плотностью и расстоянием до Солнца связи нет.  Температура поверхности Солнца (фотосфера) составляет 5780 к. В центре Солнца температура достигает 16000000  Кельвинов. Самый близкий к нам красный гигант - это Гакрукс (Gacrux). Это третья по яркости звезда в созвездии Южный Крест. И в отличие от своих сине-белых соседей по созвездию, Гакрукс - очень яркий красный гигант. Расстояние до него - примерно 88 световых лет. Бетельгейзе, Антарес и Арктур, Альдебаран, тоже красные гиганты. Их размеры просто колоссальны. Бетельгейзе имеет размеры, по разным оценкам не менее чем в 900 раз превышающие размеры нашего Солнца. Если эту звезду поместить в Солнечную систему, то ее внешние границы могут достигнуть Марса.

. Красным гигантом в астрономии называют особенно большие звезды поздних спектральных классов, обладающие высокой светимостью и протяженными оболочками. Красные гиганты неспроста так названы, их размеры просто огромны, радиус среднего красного гиганта превосходит радиус нашего Солнца в сотни раз, размеры же больше солнечного примерно в 1500 раз. Но при этом красный гигант в разы холоднее обычной звезды (включая опять таки наше Солнце), которая тепла излучает в два раза больше, нежели красный гигант. Красный гигант – светило, которое относится к спектральным классам М и К. В сравнении с другими звёздами, температурные показатели на поверхности таких объектов не очень большие и достигают всего 5000 К. Однако несмотря на это, их всё равно хорошо видно на небосклоне благодаря большим габаритам.

Классификация по звёздной величине Звезды выбрасывают в открытый космос громадное количество энергии, почти полностью представленной разными видами лучей. Суммарная энергия излучения светила, испускаемая за отрезок времени — это и есть светимость звезды Количество энергии, выделяемой во время ядерной реакции, напрямую зависит от массы звезды — чем она больше, тем сильнее гравитация сжимает ядро светила, и тем больше водорода одновременно превращается в гелий. Чем больше масса звезды, тем больше светимость. Светимость звезды — полная энергия, излучаемая звездой по всем направлениям за единицу времени. Измеряется в Вт ( ватт) Видимая звёздная величина — мера наблюдаемого блеска небесного объекта, видимого с Земли. Абсолютная звёздная величина — видимая звёздная величина, которую бы звезда имела, находясь на стандартном расстоянии 10 пк (парсек) Светимость звезды (L) отражает в первую очередь количество энергии, излучаемой звездой — и потому измеряется в ваттах, как и любая другая количественная характеристика энергии. Это объективная величина: она не меняется при перемещении наблюдателя. У Солнца этот параметр составляет 3,82 × 1026 Вт. Показатель яркости нашего светила часто используется для измерения светимости других звезд, что куда удобнее для сопоставления — тогда он отмечается как L☉, (☉— это графический символ Солнца.) На светимость звезды серьезно влияет площадь ее излучающей поверхности — то есть поверхности самой звезды. Температура тут оказывается не столь существенной. Накал поверхности звезды Альдебаран  на 40% меньше температуры фотосферы Солнца — но из-за больших размеров, ее светимость превышает солнечную в 150 раз.

Светимость часто путают с видимой звёздной величиной  (m), которая описывает количество энергии, видимое наблюдателем — проще говоря, насколько ярко видно от или иной объект в определенной точке  Вселенной. (Еще этот параметр называют блеском). Звездная величина безразмерная — измеряется условными единицами, и чем меньше показатель, тем ярче объект. Также величина субъективная — расстояние от светящегося объекта значит больше, чем его истинная светимость. Звезда 1-й величины (1m) в сто раз ярче, нежели светило 6-й величины (6m). Более яркие звезды могут иметь отрицательную звездную величину, к примеру,  Сириус (-1.5m). Также сегодня известно, что среди небесных светил могут быть не только звезды, но и тела, отражающие свет звезд – планеты, кометы или астероиды. Звездная величина полной  Луны составляет −12,7m. Нельзя говорить, что чем больше абсолютная звёздная величина, тем выше светимость. По диаграмме Герцшпрунга – Рессела видно, что чем больше светимость, тем абсолютная звёздная величина становится меньше, а яркость звезды больше.

Классификация звезд на основе диаграммы Герцшпрунга – Расселла В 1910 году датский астроном Эйнар Герцшпрунг предложил диаграмму показывающую зависимость между абсолютной звёздной величиной, светимостью, спектральным классом  и температурой поверхности звезды. Как оказалось позже, практически такую же диаграмму построил и американец Генрих Нортон Рассел, правда, несколько позже. К главной последовательности на диаграмме Герцшпрунга — Рассела относятся звезды радиус которых находится в пределах от 0,1 до 10 радиусов Солнца. Радиус звезды Сириус А равен 2 солнечным радиусам, а значит, она относится к звездам главной последовательности. На этой диаграмме показано, что большинство звезд относятся к главной последовательности звезд. Самая далёкая звезда главной последовательности, неофициально названная ИКАР была открыта в 2018 году. Она расположена в 9 миллиардах световых лет от Земли.

Под главной последовательностью внизу находятся субкарлики – красные звезды малой светимости. Они имеют огромную плотность. По горизонтальной оси диаграммы Герцшпрунга — Рессела были отложены спектральные классы в порядке понижения температур звезд, начиная со спектрального класса О (очень горячие звезды) слева и заканчивая спектральным классом М (относительно холодные звезды) справа. По вертикальной оси были отложены светимости или абсолютные звездные величины. Каждая звезда имеет какую-то определенную абсолютную величину и относится к какому-то определенному спектральному классу, а потому может быть представлена точкой в определенном месте диаграммы. В среднем чем горячее звезда, тем она ярче. Поэтому чем левее находился на диаграмме спектральный класс исследуемой звезды (и значит, чем больше была ее температура), тем выше оказывалась она по шкале абсолютных величин. В результате большинство звезд, нанесенных Ресселом на диаграмму, расположилось по диагонали от верхнею левого угла к нижнему правому. Они образуют так называемую главную последовательность

Карликовая звезда, («карлик») — может быть следующих типов: Жёлтый карлик — тип небольших звёзд главной последовательности спектрального класса G, имеющих массу от 0,8 до 1,2 массы Солнца. Белый карлик это потухшая и остывающая звезда. Другими словами, тело, находящееся на конечном этапе эволюции. Несмотря на то, что по размеру они похожи с нашей планетой, масса примерно такая же, как солнечная. Причем данный тип относится к спектральному классу А.

Над главной последовательностью на этой диаграмме находятся звезды, относящиеся к гигантам и сверхгигантам. Они больше Солнца в сотни раз. На этой диаграмме также указаны спектральные классы звезд, абсолютная звездная величина (М) и светимость в единицах сравнения с светимостью Солнца. Светимость звёзд класса О больше, чем класса М.

Сначала звезда представляет собой скопление холодного газа, которое медленно сжимается. По мере сжатия звезда нагревается и на первых стадиях излучает почти исключительно в инфракрасной области спектра — это инфракрасный гигант вроде Эпсилона Возничего. Продолжая сжиматься, она раскаляется настолько, что излучает уже ярко-красный свет, как Бетельгейзе и Антарес. Звезда продолжает сжиматься и нагреваться, становясь желтым гигантом, меньшим по размерам, но более горячим, чем красный гигант, а потом голубовато-белой звездой — еще меньше и еще горячее. Голубовато-белая звезда класса О не намного больше Солнца, но гораздо горячее его — температура ее поверхности достигает 30 000°С, т.е. она в пять раз выше температуры поверхности Солнца. Максимум ее излучения находится в сине-фиолетовой области видимого спектра и даже в ультрафиолетовой, чем и объясняется ее цвет. Переходя от стадии холодной туманности в голубовато-белую стадию, звезда перемещается в верхней части диаграммы Герцшпрунга—Рессела справа налево, пока не достигает верхнего левого конца главной последовательности.

Теперь звезда продолжает сжиматься под влиянием тяготения, но по какой-то причине более не нагревается. Одно из ранних объяснений этого факта заключалось в том, что на стадии голубовато-белой звезды вещество ее достигает такой плотности, что уже теряет свойства газа. При дальнейшем сжатии все большая часть ядра звезды перестает быть газом, а из-за этого по какой-то причине пропорционально сокращается выделение тепла. Поэтому голубовато-белая звезда одновременно и сжимается, и остывает, быстро слабея под влиянием обоих этих факторов. Она становится желтым карликом, как наше Солнце потом красным карликом, как звезда Барнарда, и, наконец, гаснет совсем и превращается в черный карлик — пепел догоревшей звезды. Исторически сложилось, что звёзды главной последовательности также называют «звёздами-карликами»

Белые карлики представляют собой компактные звёзды с массами, сравнимыми или большими, чем масса Солнца, но с радиусами в 100 раз меньшими. Звезда Сириус В сравнима по массе с Солнцем и имеет радиус в 200 раз меньший, то есть она относится к белым карликам. 2) Спектральный класс М звезд имеет температуру в пределах от 2000 до 3500 К. Звёзды Ригель и е Возничего не входят в этот температурный интервал.

Расстояния от Земли или Солнца разных звёзд Созвездия – это несколько звезд объединенных общим участком на небе, а не находящиеся на одинаковых расстояниях друг от друга или от Земли. Это условные группировки ближайших, по видимости с Земли, звезд. При этом они могут находиться на разных расстояниях от Земли, а значит, и от Солнца. Планеты Солнечной системы. Планеты: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран и Нептун; Самая большая планета Солнечной системы – это Юпитер; Солнечная система содержит 8 планет, которые делятся на две группы. В первую группу входят планеты земной группы – это Меркурий, Венера, Земля, Марс. Во вторую группу входят газовые гиганты: Юпитер, Сатурн, Уран и Нептун; Логично, что газовые гиганты имеют меньшую плотность, чем твердые; массы астероидов не зависят от дальности от Солнца.

Спутники планет Солнечной системы Необходимо также знать основные спутники планет. Для Земли – это естественный спутник Луна. Марс имеет два спутника – Демос и Фобос. Венера и Меркурий не имеют спутников. Существует множество факторов, влияющих на наличие спутников у планеты, но основным является гравитация, то есть, чем больше масса планеты, тем наиболее вероятно у нее есть спутники. Например, Юпитер самая большая планета Солнечной системы и у него больше всех спутников - самыми известным являются: Ио, Европа, Ганимед и Каллисто – в порядке удаленности от Юпитера. На 2019 год известны 79 спутников Юпитера. Кроме того, у Юпитера есть система колец.  Все без исключения спутники меньше Земли. Правда некоторые из них больше чем Луна, но и только. Открытие 20 ранее неизвестных лун, вращающихся вокруг Сатурна, означает, что из всех планет солнечной системы Сатурн имеет наибольшее число спутников – 82, данные на 2020 год. До сих пор Юпитер считался планетой с наибольшим числом лун.   Кроме того надо помнить, что Сатурн имеет так называемое кольцо, которое содержит множество объектов являющимися спутниками. На сегодня есть данные о 27 естественных спутников Урана, из них выделяют пять крупных, шарообразной формы - это Миранда, Ариэль, Умбриэль, Титания и Оберон. Кроме ледяной Миранды, остальные состоят из примерно равного соотношения льда и горных пород.

Спутники Нептуна — естественные спутники, в настоящее время известно 14 таких спутников Формулу гравитационного притяжения. F=G∗m∗M/R², где G=6,67∗10−11G=6,67∗10−11 – гравитационная постоянная;  m – масса первого объекта, например, спутника;  M – масса второго объекта, например, планеты;  R – расстояние между их центрами;  F– сила, с который тела притягиваются друг к другу. Сила гравитационного притяжения обратно пропорциональна расстоянию между объектами. Чем ближе спутник находится к планете, тем сильнее он притягивается и тем меньше ее период обращения. Размеры планет и некоторых основных спутников

Наличие атмосферы. Газовая оболочка небесного тела, удерживаемая около него гравитацией. Поскольку не существует резкой границы между атмосферой и межпланетным пространством, то обычно атмосферой принято считать область вокруг небесного тела, в которой газовая среда вращается вместе с ним как единое целое. Толщина атмосферы некоторых планет, состоящих в основном из газов (газовые планеты), может быть очень большой. Атмосфера Земли содержит кислород, используемый большинством живых организмов для дыхания, и диоксид углерода, потребляемый растениями и бактериями в процессе фотосинтеза. Атмосфера также является защитным слоем планеты, защищая её обитателей от солнечного  излучения и метеоритов. Атмосфера есть у всех массивных тел — газовых гигантов и большинства планет земного типа в Солнечной системе — кроме Меркурия.

Астероиды - относительно небольшие небесные тела, которые движутся вокруг Солнца,  по своей орбите и не обладают атмосферой, так как масса маленькая. В большинстве случаев они неправильной формы. Могут обладать спутниками (другими астероидами, вращающимися вокруг них). Минимальный размер астероида 30 метров, всё что меньше - метеороид. Между Марсом и Юпитером находится пояс астероидов. Именно там находится самый большой астероид - Паллада, его диаметр составляет 532 километра. А вот самым тяжёлым является Веста (2,59·1020кг). Интересно, что в этом поясе также вращается и карликовая планета - Церера (по размерам и массе вдвое превышает самые крупные астероиды). Раньше она также относилась к астероидам, но не так давно изменила свой статус (в 2006г). Астероиды могут быть как одиночными объектами, так и разделёнными на группы и семейства. Такое деление происходит после наблюдения и анализа их орбит. Те объекты, что движутся по одной орбите, относят к одной группе. А вот деление на семейства происходит более тщательно. Как правило, это осколки астероидов, столкнувшихся в прошлом.  Массы астероидов не зависят от дальности от Солнца. Пояс Койпера — это регион в Солнечной системе, который начинается за Нептуном. Но ученые на данный момент не знают, где он заканчивается. Мы не знаем, что происходит на наружном крае пояса Койпера и где он находится, но мы знаем, что он очень далеко: некоторые открытые объекты пояса Койпера имеют орбиты, Крупнейшими объектами пояса астероидов считаются: — Церрера– карликовая планета. Диаметр Цереры по экватору составляет 950 км.

— Паллада – астероид. Примерный диаметр – 532 км. — Веста– астероид. Диаметр – 529,2 км. — Гигея – астероид. Диаметр 407,12 км. В холодном пространстве за пределами орбиты вращения Нептуна были обнаружены карликовые планеты. Эрида, Плутон, Хуамея, Макемаке, Церера — это самые большие из представителей. Все они очень велики. Крупнейший известный объект этой области —  Эрида, обнаруженная в 2003 году. За 599 лет она делает одно вращение вокруг солнца. Самый знаменитый для нас представитель пояса Койпера – Плутон. Большую часть времени он был для землян не просто крупным шарообразный телом на периферии Солнечной системы, а считался полноценной планетой.

— Паллада – астероид. Примерный диаметр – 532 км. — Веста– астероид. Диаметр – 529,2 км. — Гигея – астероид. Диаметр 407,12 км. В холодном пространстве за пределами орбиты вращения Нептуна были обнаружены карликовые планеты. Эрида, Плутон, Хуамея, Макемаке, Церера — это самые большие из представителей. Все они очень велики. Крупнейший известный объект этой области — Эрида, обнаруженная в 2003 году. За 599 лет она делает одно вращение вокруг солнца. Самый знаменитый для нас представитель пояса Койпера – Плутон. Большую часть времени он был для землян не просто крупным шарообразный телом на периферии Солнечной системы, а считался полноценной планетой.

. Наклон оси вращения  планеты к плоскости эклиптики.  Смена времён года зависит от угла наклона оси вращения планеты к плоскости её вращения вокруг Солнца. Если он близок к 0° или к 180° или к 90°, то смены времен года наблюдаться не будет. Сатурн имеет наклон оси вращения 26°44', то есть на нем будет наблюдаться смена времен года. На планетах Меркурий, Венера и Юпитер нет смены времён года, так как их оси вращения почти перпендикулярны их орбитам. Планета Уран лежит на боку. Времена года Урана. По наземным наблюдениям, время, за которое Уран проходит вращение вокруг собственной оси, изначально невозможно было определить. Ученые смогли это сделать только при пролете рядом с этой планетой Вояджера-2. Метод определения периодов вращения. ... У большей части планет, в том числе и Земли, ось находится практически вертикально, то есть почти перпендикулярно к плоскости планетарной орбиты. Когда объект вращается около вертикальной оси, он в то же время передвигается по кругу – около Солнца. ... За этот период на Уране происходит смена четырех сезонов, длительность каждого из них составляет около 21 земного года.   Смена времён года может происходить на тех планетах, у которых есть небольшой угол наклона, как например, у Земли. К таким планетам можно отнести: Землю, Марс, Сатурн, Плутон.

Период обращения планет вокруг Солнца по отношению к звездам называется звездным или сидерическим периодом.      Чем ближе планета к Солнцу, тем больше ее линейная и угловая скорости и короче звездный период обращения вокруг Солнца.      Однако из непосредственных наблюдений определяют не сидерический период обращения планеты, а промежуток времени, протекающий между ее двумя последовательными одноименными конфигурациями, например между двумя последовательными соединениями (противостояниями). Этот период называется синодическим периодом обращения. Определив из наблюдений синодические периоды, путем вычислений находят звездные периоды обращения планет.      Синодический период внешней планеты - это промежуток времени, по истечении которого Земля обгоняет планету на 360° при их движении вокруг Солнца.  

Эксцентриситет орбиты Рассматриваемые орбиты астероидов представляют собой эллипсы. Эксцентриситет орбиты – это числовая характеристика, которая говорит о «вытянутости» орбиты. Если эксцентриситет равен нулю, то это значит, что орбита – идеальный круг. Плоскость эклиптики – это плоскость, в которой планеты вращаются вокруг Солнца. Дело в том, что некоторые карликовые планеты и астероиды могут вращаться под наклоном к плоскости эклиптики. Эксцентриситет вычисляется по следующей формуле:

Плотность планет и звёзд Масса – это есть не что иное, как произведение плотности и объема. Объем спутника, так же как и планеты пропорционален кубу ее радиуса V=4/3∗π∗R³ где R– радиус планеты. Масса планеты. Есть вопросы, в которых необходимо сравнить объёмы. В этом случае сравнивают радиусы, так, как объём пропорционален радиусу в кубе. M=ρ∗V где ρ – плотность планеты. где M – масса планеты. Среднюю плотность астероида можно найти как  , где   - объем астероида, то есть:

Ускорение свободного падения