Прямая и окружность Эйлера

1
0
Материал опубликован 18 January 2024 в группе

                                           Прямая и окружность Эйлера

                                                                                     Кривонос Алексей,

                                                                                      учащийся 9 А класса

                                                                                       МБОУ «Школа №80 г. Донецка»

Содержание.

Введение.

Деление отрезка в данном отношении.

Теорема о пересечении медиан треугольника в одной точке.

Теорема о высотах произвольного треугольника.

Прямая Эйлера.

Медианы тетраэдра.

Высоты тетраэдра.

Прямая Эйлера тетраэдра.

Использованные источники информации.

Вступление.

Свойства треугольника были хорошо изучены еще древними греками.

В знаменитых “Началах” Евклида доказывается, что центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к его сторонам.

Архимед, определяя положение центра тяжести однородной треугольной пластинки, установил, что он лежит на каждой из трех медиан. Точку пересечения медиан треугольника называют центром тяжести или центроидом треугольника.

Позднее было доказано, что три высоты треугольника также пересекаются в одной точке, которая называется его ортоцентром.

Закономерность в расположении этих трех замечательных точек треугольника – центра O описанной окружности, центроида G, ортоцентра – впервые обнаружил знаменитый математик Леонард Эйлер (1707-1783).

t1705569459aa.png

 Рассмотрим сначала один частный случай: прямоугольный треугольник ABC (рис.1). Середина гипотенузы AB является центром описанной около него окружности. Центроид делит медиану CO в отношении 1:2, считая от вершины C. Катеты AC и BC являются высотами треугольника, поэтому вершина прямого угла совпадает с ортоцентром H треугольника. Таким образом, точки O,G,лежат на одной прямой, причем OH=3OG. Пользуясь методом координат, Эйлер доказал, что такая же связь существует между тремя указанными точками любого треугольника. Мы докажем этот факт с помощью векторов.

Деление отрезка в данном отношении.

Пусть A,B,O данные точки плоскости, и известно, что точка делит отрезок AB в отношении k: ------- = (рис.2).

t1705569459ab.png 

Выразим вектор OG через векторы OA и OB. Для этого подставим в равенство AG=* GB выражения всех векторов через OG, OA и OB: OG-OA=k(OB-OG). Решая это уравнение относительно OG, получим:

OG= ------------- . (1)

Например, если G – середина отрезка AB, то k=1 и OG= -- (OA+OB).

Теорема о пересечении медиан треугольника в одной точке.

Здесь мы попутно получим одно векторное равенство, которое понадобится нам в дальнейшем.

Теорема 1. Медианы треугольника АВС пересекаются в одной точке и делятся ею в отношении 2:1, считая от вершины, причем

3PG=PA+PB+PC, (2)

где P – любая точка плоскости или пространства.

Доказательство. Возьмем на медиане CD треугольника ABC точку G, определяемую соотношением |CG|:|GD|=2:1 (рис. 3).

t1705569459ac.png

Согласно формуле (1),

PD = -- (PA + PB),

откуда

PG = -- (PA + PB + PC).

Вычисляя вектор PG с концом в точке G’, делящей любую из двух других медиан треугольника в отношении 2:1 (считая от вершины), мы получим то же самое выражение:

PG’= -- (PA + PB + PC),

Поэтому PG’=PG, и точка G совпадает с точкой G. Следовательно, все три медианы треугольника пересекаются в одной точке G, определяемой соотношением (2).

Теорема о высотах произвольного треугольника.

Теорема 2. Высоты треугольника АВС пересекаются в одной точке Н, причем

OH= OA + OB + OC, (3)

где О – центр окружности описанной около треугольника.

Доказательство. Пусть АВС – треугольник, отличный от прямоугольного (рис.4).

t1705569459ad.png

-3-

Найдем сумму векторов OA и OB. Для этого построим точку M, симметричную О относительно стороны AB, тогда OM = OA + OB. Затем построим точку Н, для которой

OH = OM + OC = OA + OB +OC,

и докажем, что точка H и есть ортоцентр треугольника АВС.

Действительно, по построению прямые CH и OM параллельны, OM серединный перпендикуляр к отрезку АВ, следовательно, прямая СН также перпендикулярна к прямой AB, и точка лежит на высоте треугольника ABC, проведенной из вершины C.

Если повторить построение, начиная с векторов OA и OC, то получится та же точка H, но те же рассуждения показывают, что теперь точка лежит на высоте треугольника, проведенной из вершины B. Аналогично получим, что точка лежит на высоте, проведенной из вершины A. Следовательно, высоты треугольника ABC пересекаются в точке H, определяемой соотношением (3).

Легко проверить, что теорема справедлива и для прямоугольного треугольника.

Прямая Эйлера.

Из доказанных теорем 1 и 2 вытекает интересующее нас свойство замечательных точек треугольника.

Теорема 3. Центр О описанной окружности, центроид и ортоцентр любого треугольника лежат на одной прямой, причем точка лежит между точками О и Н и OG:GH = 1:2.

Доказательство. По теореме 1

3OG = OA + OB + OC.

Сравнивая это равенство с равенством (3), получим

OH = 3OG.

Следовательно, векторы OH и OG, имеющие общее начало O, расположены на одной прямой и |OG| : |GH| = 1 : 2.

Прямая, на которой лежат точки O, и H, называется прямой Эйле


в формате Microsoft Word (.doc / .docx)
Комментарии
Комментариев пока нет.

Похожие публикации