Презентация по теме «Прямоугольная система координат в пространстве»
Пояснительная записка к презентации
ПЕДАГОГИЧЕСКОЕ СООБЩЕСТВО
НАШЕМУ СООБЩЕСТВУ ИСПОЛНИЛОСЬ 9 ЛЕТ!
Пояснительная записка к презентации
Предварительный просмотр презентации
Прямоугольная система координат в пространстве. Координаты вектора Преподаватель ГАПОУ РО «РКТМ» Колыхалина К.А.
Прямоугольная система координат Если через точку пространства проведены три попарно перпендикулярные прямые, на каждой из них выбрано направление и выбрана единица измерения отрезков, то говорят, что задана прямоугольная система координат в пространстве
Прямоугольная система координат Прямые, с выбранными на них направлениями, называются осями координат, а их общая точка — началом координат. Она обозначается обычно буквой О. Оси координат обозначаются так: Ох, Оу, Оz — и имеют названия: ось абсцисс, ось ординат, ось аппликат.
Прямоугольная система координат Вся система координат обозначается Охуz. Плоскости, проходящие соответственно через оси координат Ох и Оу, Оу и Оz, Оz и Ох, называются координатными плоскостями и обозначаются Оху, Оуz, Оzх.
Прямоугольная система координат Точка О разделяет каждую из осей координат на два луча. Луч, направление которого совпадает с направлением оси, называется положительной полуосью, а другой луч отрицательной полуосью.
Прямоугольная система координат В прямоугольной системе координат каждой точке М пространства сопоставляется тройка чисел, которые называются ее координатами.
Алгоритм определения координаты точки в пространстве
Пример Определите координаты точек, изображенных на рисунке.
Пример А (9; 5; 10), В (4; —3; 6), С (9; 0; 0), D (4; 0; 5), Е (0; 3; 0), F (0; 0; -3).
Координаты вектора
Что такое вектор? Вектором называется направленный отрезок, для которого указано его начало и конец. В данном случае началом отрезка является точка A, концом отрезка – точка B. Сам вектор обозначен через . Направление имеет существенное значение, если переставить стрелку в другой конец отрезка, то получится вектор , и это уже совершенно другой вектор. Понятие вектора удобно отождествлять с движением физического тела: согласитесь, зайти в двери колледжа или выйти из дверей колледжа – это совершенно разные вещи. Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором . У такого вектора конец и начало совпадают.
Любой вектор можно разложить по координатным векторам, т. е. представить в виде причем коэффициенты разложения х, у, z определяются единственным образом.
Коэффициенты х, у и z в разложении вектора по координатным векторам называются координатами вектора в данной системе координат.
Правила 10. Каждая координата суммы двух или более векторов равна сумме соответствующих координат этих векторов. Другими словами, если a {х1, у1, z1} и b{х2, у2, z2} — данные векторы, то вектор a+b имеет координаты {х1+х2, у1 + у2, z1 + z2}.
Правила 20. Каждая координата разности двух векторов равна разности соответствующих координат этих векторов. Другими словами, если r1 {х1, y1, z1} и r2{х2 у2; z2} — данные векторы, то вектор a - b имеет координаты {х1- х2, y1 - y2, z1 - z2}.
Похожие публикации