Конспект материала по геометрии 9-11 классов «Квадратура круга и число пи»
Квадратура круга и число π («пи») |
Напомним: число π («пи») определяется как отношение длины окружности C к ее диаметру d = 2r. Это кратко выражается формулой для вычисления длины окружности C = πd, или C = 2πr. Другая известная формула, в которой встречается π, – формула площади круга S = πr2, или S = πd2/4. В принципе π можно было бы определить как отношение площади круга к квадрату радиуса. За этими формулами скрываются три нетривиальных математических факта:
1) |
длина окружности пропорциональна ее диаметру; |
2) |
площадь круга пропорциональная квадрату радиуса; |
3) |
коэффициенты пропорциональности в двух последних случаях совпадают. |
Десятичная дробь, выражающая число π, бесконечна, хотя можно вычислить различные конечные дроби – десятичные приближения для π. Наиболее популярное приближение – с точностью до сотых: π ≈ 3,14.
Самое простое приближение для π полагает его равным 3 (несмотря на грубость этого приближения, его ошибка менее 5 %). Такое приближение использовалось, например, в Древнем Вавилоне в III–II вв. до н. э.: длину окружности находили по правилу, которое в современных обозначениях можно записать C = 3d, площадь круга находили по правилу S = C2/12. Значение π = 3 используется и древними иудеями: библейский автор упоминает, что при строительстве храма при царе Соломоне мастер Хирам из Тира в числе других храмовых украшений «сделал литое из меди море, – от края его до края его десять локтей, – совсем круглое,... и шнурок в тридцать локтей обнимал его кругом» (3 Цар 7, 23). Позже для более точных вычислений использовалось геометрическое приближение: от площади квадрата, описанного вокруг круга, отнимались площади треугольников с длиной стороны, равной трети стороны квадрата, получалось довольно точное значение π = 3 + 1/9 = 3,11.
Рис. 1. Геометрические приближения площади круга,Древний Вавилон |
В Древнем Египте для вычисления площади круга использовалось правило S = (8d / 9)2, что соответствует значению π = 4 ∙ (8/9)2 ≈ 3,1605. Ошибка при этом составляет менее 1 %. Как получали это правило, неизвестно.
Рис. 2. Геометрическое приближение площади круга, Древний Египет |
У древнегреческих математиков с их превалирующим интересом к геометрическим построениям и доказательствам, а не к вычислениям, вопрос о численном значении π был не столь важным, нежели проблема квадратуры круга, т. е. построения квадрата, равновеликого данному кругу, если удастся, то с помощью циркуля и линейки, а в противном случае – с помощью каких-то других инструментов. Задача о квадратуре круга имела широкую известность не только среди математиков: например, о ней говорится в комедии Аристофана «Птицы».
Изучая задачу о квадратуре круга, Гиппократ Хиосский (V в. до н. э.) нашел некоторые случаи, когда с помощью циркуля и линейки можно найти квадратуру определенных частей круга, ограниченных кривыми линиями (а именно, двумя окружностями). Такие части называются луночками. Самый простой случай – это луночка между окружностью, описанной около равнобедренного прямоугольного треугольника, и другой окружностью, диаметром которой служит катет этого треугольника.
Рис. 3. Для такой луночки можно построить квадратуру |
Нетрудно видеть, что, по теореме Пифагора, AB2 = 2BC2, а потому площадь круга, построенного на AB, равна двум площадям круга, построенного на BC, а значит, площадь полукруга, построенного на BC, равна площади четверти круга, построенного на AB. Поэтому, вырезав из этих фигур их общую часть – сегмент BC – получим равновеликие фигуры: таким образом, площадь луночки равна площади прямоугольного треугольника BOC.
Древнейшие известные попытки собственно квадратуры круга принадлежат Антифонту и Бризону (V в. до н. э.). Антифонт последовательно вписывал в круг правильные многоугольники, каждый раз удваивая количество сторон, и полагал, что в конце концов многоугольник совпадет с окружностью. Бризон строил два квадрата – вписанный в окружность и описанный вокруг нее – и считал, что площадь квадрата, лежащего между ними, равна площади круга. Разумеется, в буквальном понимании и Антифонт, и Бризон заблуждались. Однако их идеи оказались весьма плодотворными: действительно, вписывая в окружность правильные многоугольники со все большим числом сторон, можно сколь угодно близко подойти к площади круга и длине окружности; смысл есть и в том, чтобы рассматривать не только вписанные, но и описанные многоугольники: при этом площадь круга будет лежать между площадями вписанных и описанных многоугольников, а длина окружности – между периметрами тех и других.
Рис. 4. Площадь круга – предел площади описанных и вписанных многоугольников |
В дальнейшем именно вписанные и описанные правильные многоугольники стали активно применяться как для теоретических исследований, так и для конкретного вычисления числа π. Именно с помощью таких многоугольников было сформулировано строгое доказательство того, что площади кругов относятся как квадраты их диаметров, найденное, по-видимому, Евдоксом и приведенное в «Началах» Евклида. Архимед доказал, что площадь круга равна половине произведения длины окружности на ее радиус. Кроме того, с помощью вычисленных им периметров вписанных и описанных правильных многоугольников (от 6-угольника до 96-угольника) Архимед нашел, что:
|
или, в десятичных дробях, 3,1409... < π < 3,1428... (подлинное значение π = 3,14159...).
Таким образом, он не только нашел приближенные значения π, но и оценил точность этих приближений. Уже найденная Архимедом верхняя оценка, равная 22/7, дает приближение π с точностью 0,04 %. Эту дробь часто называют «архимедовым числом». Клавдий Птолемей, использовав правильный 720-угольник, нашел, что π ≈ 377/120, что составляет приблизительно 3,14167 (ошибка меньше 0,003 %).
Как и для удвоения куба, и для трисекции угла, для квадратуры круга были изобретены методы, использующие свойства различных кривых. Общим свойством этих кривых было их образование путем сочетания двух типов движений – равномерного поступательного (вдоль некоторой прямой) и равномерного вращательного (вокруг некоторой точки или оси). При этом имеет место пропорциональность между углом, на который повернулся вращающийся элемент, и длиной отрезка, пройденной при поступательном движении.
Прежде всего, это была уже упомянутая квадратриса (см. урок, посвященный трисекции угла), которую впервые использовал для квадратуры круга Динострат. Оказывается, если K – точка, в которой квадратриса пересекает отрезок AD, то четверть длины окружности, проходящей через точку K, с центром в точке A, равна длине отрезка AB.
|
|||||
Рис. 5. Метод построения квадратрисы и использование ее для построения длины окружности |
Из этого следует, что длина дуги BD равна AB2/AK, а площадь круга радиуса AB равна площади прямоугольника со сторонами AB2/AK и AB/2; такой прямоугольник легко построить с помощью циркуля и линейки, если известны отрезки AB и AK. Построив прямоугольник, можно построить и равновеликий ему квадрат.
Кроме квадратрисы, для квадратуры круга использовались связанные с ней винтовая линия и спираль Архимеда. Винтовая линия получается при движении точки по поверхности цилиндра, складывающемся из двух движений: во-первых, движения с постоянной скоростью вдоль оси цилиндра, а во-вторых, равномерного вращения по окружности основания цилиндра.
Рис. 6. Винтовая линия |
Спираль Архимеда – эта кривая, которую заметает точка M, равномерно движущаяся вдоль радиуса AN, который, в свою очередь, равномерно вращается вокруг точки A.
Рис. 7. Спираль Архимеда |
Задача, похожая на квадратуру круга, фигурировала и в Древней Индии. В уже упоминавшейся (см. урок по теореме Пифагора) книге «Шулва-сутра», излагавшей правила строительства алтарей, построение круга, равновеликого данному квадрату ABCD, производится так. Вокруг квадрата описывается окружность; пусть перпендикуляр к отрезку AB, проходящий через центр окружности O, пересекает прямую AB и окружность в точках P и Q, а точка K делит отрезок PQ в отношении PK : KQ = 1 : 2. ТогдаOK – радиус круга, равновеликого данному квадрату. Если a – сторона квадрата, то длина полученного радиуса описанный способ соответствует приближенному значению π
Рис. 8. Построение круга, приблизительно равновеликого квадрату, Древняя Индия |
В более поздние времена в Индии использовались приближения для π, равные (т. е. ≈ 3,162 – ошибка менее 1 %); 22/7 и даже 3,1416. Интересно наглядное доказательство предложения «площадь круга равна площади прямоугольника, стороны которого равны полуокружности и радиусу» у математика Ганеши (XVI в.). Как и в доказательстве теоремы Пифагора у Бхаскары, здесь все доказательство состоит из чертежа и слова «смотри». Ганеша делит круг на 12 секторов, а затем разворачивает каждый полукруг, состоящий из 6 секторов, в пилообразную фигуру, основание которой равно полуокружности, а высота – радиусу. Прямоугольник, о котором говорится в условии, получится при вставлении зубьев одной «пилы» в зазоры между зубьями другой. По-видимому, читатель должен был представлять себе, что круг разделен не на 12, а на столь большое число секторов, что эти секторы неотличимы от треугольников, составляющих «пилы».
Рис. 9. Площадь круга равна площади прямоугольника, образованного радиусом и длиной полуокружности, Древняя Индия |
Значение по-видимому, впервые появилось у китайского астронома и философа Чжан Хена (нач. II в. н. э.); вероятно, из Китая оно перешло к индийцам (Брахмагупта, VII в.) и арабам (ал-Хорезми, IX в.); впрочем, метод получения этого значения нам неизвестен. Лю Хуэй (III–IV вв.) с помощью рассмотрения вписанных и описанных многоугольников (в том числе с 3072 вершинами) пришел к приближению π = 3,14159, а Цзу Чун-чжи (V в.) доказал, что 3,1415926 < π < 3,1415927.
Самаркандский математик ал-Каши в «Трактате об окружности» (1424 г.) поставил себе задачу выразить окружность через диаметр с такой точностью, чтобы погрешность в длине окружности, равной 600 000 диаметров Земли, не превосходила толщины волоса. Рассмотрев правильные многоугольники вплоть до фигуры с 805 306 368 (3 ∙ 228) вершинами, ал-Каши нашел 16 верных знаков (после запятой) числа π, а именно, приближение π = 3,14159265358979325 (в реальности 17-й знак после запятой – 3 или 4, потому что 18-й – 8). Европейские математики достигли такой точности и превзошли ее лишь в конце XVI в.: в 1597 г. голландец А. ван Роомен вычислил 17-й знак, для чего применил многоугольник с 1 073 741 824 (230) вершинами.
В начале XVII в. профессор математических и военных наук Лейденского университета Лудольф ван Цейлен довел количество точных знаков (после запятой) числа π до 35. Современники называли найденное им приближение π «числом Лудольфа». Эти знаки он завещал выбить на надгробном камне. Интересно, что, поскольку в то время привычная нам позиционная запись десятичных дробей еще не вполне прижилась, на надгробии было написано не 3,14159265358979323846264338327960288, а
|
Еще два голландца XVII в. – В. Снеллиус и Х. Гюйгенс – с помощью некоторых тонких геометрических рассуждений смогли достичь большей точности при меньшем числе сторон рассматриваемых многоугольников. Снеллиус воспроизвел результат Архимеда – три верных знака после запятой – рассматривая не более чем 6-угольники, а с помощью 96-угольника получил целых 7 верных знаков. Гюйгенс, доказав некоторые геометрические теоремы, смог вычислить 10 верных знаков с помощью 60-угольника.
Далее метод вписанных и описанных многоугольников уступил место новым методам, разработанным с помощью математического анализа – использованию бесконечных сумм, которые дают приближенные значения числа π нужной точности, если оставить в них достаточно большое, но лишь конечное число членов. В результате число верных знаков быстро возросло: вычислители подбирали формулы поудобнее и соревновались друг с другом в том, кто больше получит этих знаков.
|
Рекорд для XIX в. поставил Уильям Шенкс, нашедший в результате 707 знаков после запятой; в 1-ой половине XX в. эти знаки часто воспроизводили в популярной литературе, а архитекторы даже украшали ими свои сооружения (Дом занимательной науки в Ленинграде, ныне Санкт-Петербург, 1934; Дворец открытий в Париже, 1937). В 1945 г. результаты Шенкса были проверены на компьютере, и оказалось, что из его знаков верны только первые 527. Компьютеры позволили существенно увеличить количество точных цифр в десятичном разложении π, причем, если раньше вычислители тратили на них многие годы, то теперь компьютеры справлялись с этим менее чем за день работы. Этому также способствовало применение более эффективных алгоритмов на основание новых математических формул.
|
Само обозначение π для отношения окружности к диаметру было введено в 1706 году У. Джонсом.
Что касается принципиальных математических результатов относительно π, то здесь следует упомянуть, во-первых, доказательство иррациональности этого числа, проведенное в 1766 г. И. Г. Ламбертом (некоторый пробел в доказательстве Ламберта был восполнен в 1800 г. А. М. Лежандром), а во-вторых, доказательство трансцендентности π, осуществленное в 1882 г. К. Ф. Линдеманом. Трансцендентность некоторого числа означает, что оно не может быть корнем никакого уравнения видаanxn + an – 1xn – 1 + ... + a1x + a0 = 0 с целыми коэффициентами a0, a1, ..., an. Из этого следует, что оно не может быть представлено в виде конечной комбинации целых чисел, арифметических действий и знака извлечения корня. Поэтому и квадратура круга не может быть решена с помощью циркуля и линейки, которые позволяют строить лишь отрезки, выражаемые через арифметические действия и квадратные корни.