Типы реактивных двигателей
Презентация по предмету физика на тему "Типы реактивных двигателей" Подготовил ученик МБОУ СШ №30 10 А класса Жидков Илья
Что такое ракетный двигатель? Ракетный двигатель — реактивный двигатель, источник энергии и рабочее тело которого находятся в самом средстве передвижения. Ракетный двигатель — единственный практически освоенный способ вывода полезной нагрузки на орбиту вокруг Земли. Ракетный двигатель — единственный практически освоенный способ вывода полезной нагрузки на орбиту вокруг Земли.
Принцип работы ракетного двигателя. Ракетные двигатели принципиально отличаются. Ракетные двигатели — это реактивные двигатели. Основной принцип движения ракетного двигателя — это знаменитый принцип Ньютона, «на каждое действие есть равное противодействие». Ракетный двигатель выбрасывает массу в одном направлении, а благодаря принципу Ньютона движется в противоположном направлении. Понятие «выбрасывания массы и движения по принципу Ньютона» может быть сложно понять с первого раза, потому что ничего не разобрать. Ракетные двигатели, кажется, работают с огнем, шумом и давлением, а не «толкают вещи». Давайте рассмотрим несколько примеров, чтобы получить более полную картину реальности. Ракетный двигатель, как правило, выбрасывает массу в форме газа под высоким давлением. Двигатель выбрасывает массу газа в одном направлении, чтобы получить реактивное движение в противоположном направлении. Масса идет от веса топлива, которое сгорает в двигателе ракеты. Процесс горения ускоряет массы топлива так, что они выходят из сопла ракеты на высокой скорости. Тот факт, что топливо превращается из твердого тела или жидкости в процессе сгорания, никак не меняет его массу. Если вы сожжете килограмм ракетного топлива, вы получите килограмм выхлопа в виде горячих газов на высокой скорости. Процесс сжигания ускоряет массу. Тяга. «Сила» ракетного двигателя называется тягой. Тяга измеряется в ньютонах в метрической системе и «фунтах тяги» в США (4,45 ньютона тяги эквивалентны одному фунту тяги). Фунт тяги — это количество тяги, необходимое для удержания 1-фунтового объекта (0,454 кг) неподвижным относительно силы тяжести Земли. Ускорение земной гравитации составляет 9,8 м/с². Одной из забавных проблем ракет является то, что топливный вес, как правило, в 36 раз больше полезной нагрузки. Потому что помимо того, что двигателю нужно поднимать вес, этот же вес и способствует собственному подъему. Чтобы вывести крошечного человека в космос, нужна огромная ракета и много-много топлива. Обычная скорость для химических ракет составляет от 8000 до 16 000 км/ч. Топливо горит около двух минут и вырабатывает 3,3 миллиона фунтов тяги на старте. Три основных двигателя космического шаттла, например, сжигают топливо в течение восьми минут и вырабатывают около 375 000 фунтов тяги каждый в процессе горения.
Типы ракетных двигателей. Сила тяги в ракетном двигателе возникает в результате преобразования исходной энергии в кинетическую энергию реактивной струи рабочего тела. В зависимости от вида энергии, преобразующейся в кинетическую энергию реактивной струи, различают: 1. Химические ракетные двигатели; 2. Ядерные ракетные двигатели; 3. Электрические ракетные двигатели.
Химический ракетный двигатель. Наиболее распространены химические ракетные двигатели, в которых, в результате экзотермической химической реакции горючего и окислителя (вместе именуемых топливом), продукты сгорания нагреваются в камере сгорания до высоких температур, расширяясь, разгоняются в сверхзвуковом сопле и истекают из двигателя. Топливо химического ракетного двигателя является источником как тепловой энергии, так и газообразного рабочего тела, при расширении которого его внутренняя энергия преобразуется в кинетическую энергию реактивной струи. В твердотопливном двигателе (РДТТ) горючее и окислитель хранятся в форме смеси твёрдых веществ, а топливная ёмкость одновременно выполняет функции камеры сгорания. Твердотопливный двигатель и ракета, оборудованная им, конструктивно устроены гораздо проще всех других типов ракетных двигателей и соответствующих ракет, а потому они надёжны, дёшевы в производстве, не требуют больших трудозатрат при хранении и транспортировке, время подготовки их к пуску минимально. Поэтому в настоящее время они вытесняют другие типы ракетных двигателей из области военного применения. Вместе с тем, твёрдое топливо энергетически менее эффективно, чем жидкое. Удельный импульс твердотопливных двигателей составляет 2000 — 3000 м/с. Тяга — свыше 1300 тс (ускоритель Спейс Шаттла). В жидкостных ракетных двигателях (ЖРД) горючее и окислитель пребывают в жидком агрегатном состоянии. Они подаются в камеру сгорания с помощью турбонасосной или вытеснительной систем подач. Жидкостные ракетные двигатели допускают регулирование тяги в широких пределах, и многократное включение и выключение, что особенно важно при маневрировании в космическом пространстве. Удельный импульс ЖРД достигает 4500 м/c. Тяга — свыше 800 тс (РД-170). По совокупности этих свойств ЖРД предпочтительны в качестве маршевых двигателей ракет-носителей космических аппаратов, и маневровых двигателей КА.
Ядерный ракетный двигатель. Ядерный ракетный двигатель — реактивный двигатель, рабочее тело в котором (например, водород, аммиак и др.) нагревается за счет энергии, выделяющейся при ядерных реакциях (распада или термоядерного синтеза). Различают радиоизотопные, ядерные и термоядерные ракетные двигатели. Ядерное топливо применяют только в крылатых ракетах. Ядерные ракетные двигатели позволяют достичь значительно более высокого (по сравнению с химическими ракетными двигателями) значения удельного импульса благодаря большой скорости истечения рабочего тела (от 8 000 м/с до 50 км/с и более). Вместе с тем, общая тяга ЯРД может быть сравнима с тягой химических ракетных двигателей, что создает предпосылки для замены в будущем химических ракетных двигателей ядерными. Основной проблемой при использовании ЯРД является радиоактивное загрязнение окружающей среды факелом выхлопа двигателя, что затрудняет использование ЯРД (кроме, возможно, газофазных — см. ниже), на ступенях ракет-носителей, работающих в пределах земной атмосферы. Впрочем, конструктивно совершенный ГФЯРД, исходя из его расчётных тяговых характеристик, может легко решить проблему создания полностью многоразовой одноступенчатой ракеты-носителя. ЯРД по агрегатному состоянию ядерного топлива в них подразделяются на твёрдо, жидко- и газофазные. В твёрдофазных ЯРД делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать (лучистой энергией в данном случае можно пренебречь) газообразное рабочее тело (РТ) (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки. Температура РТ ограничена максимальной допустимой температурой элементов конструкции (не более 3 000 °К), что ограничивает скорость истечения. Удельный импульс твердофазного ЯРД, по современным оценкам, составит 8000—9000 м/с, что более, чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей. Такие ядерные ракетные двигатели были созданы и успешно испытаны на стендах (программа NERVA в США, ядерный ракетный двигатель РД-0410 в СССР).
Электрический ракетный двигатель. В электрических ракетных двигателях (ЭРД) в качестве источника энергии для создания тяги используется электрическая энергия. Удельный импульс электрических ракетных двигателей может достигать 10−210 км/с. В зависимости от способа преобразования электрической энергии в кинетическую энергию реактивной струи, различают электротермические ракетные двигатели, электростатические (ионные) ракетные двигатели и электромагнитные ракетные двигатели. Высокие значения удельного импульса ЭРД позволяет ему расходовать (в сравнении с химическими двигателями) малое количество рабочего тела на единицу тяги, но при этом возникает проблема большого количества электроэнергии, необходимой для создания тяги. Мощность, необходимая для создания единицы тяги ракетного двигателя (без учёта потерь), определяется формулой: Таким образом, чем выше удельный импульс, тем меньше требуется вещества, и больше — энергии, для создания единицы тяги. Поскольку мощность источников электроэнергии на космических аппаратах весьма ограничена, это ограничивает и тягу, которую могут развить ЭРД. Самым приемлемым для ЭРД источником электроэнергии в космосе в настоящее время являются солнечные батареи, не потребляющие топлива, и обладающие достаточно высокой удельной мощностью (по сравнению с другими источниками электроэнергии). Низкая тяга (не превышающая единиц ньютонов для самых мощных из современных электрических ракетных двигателей) и неработоспособность в атмосфере, на высотах менее 100 км сужают область применения электрических ракетных двигателей. В настоящий момент электрические ракетные двигатели применяются в качестве двигателей ориентации и коррекции орбит автоматических космических аппаратов (главным образом, спутников связи) с использованием солнечных батарей в качестве источников энергии. Благодаря высокому удельному импульсу (скорости истечения) расход рабочего тела небольшой, что позволяет обеспечить длительный срок активного существования КА.
Ракетные двигатели, которые ещё находятся в стадии разработки. 1. Плазменный двигатель — электрический ракетный двигатель, рабочее тело которого приобретает ускорение, находясь в состоянии плазмы. Плазменные двигатели различной конструкции строились и тестировались начиная с 60-х годов, однако на начало XXI века существует лишь один проект плазменного двигателя — VASIMR, который реализуется на коммерческой основе: пока двигатель прошел лишь стендовые испытания, разработка продолжается. Другие типы плазменных двигателей, в частности СПД и ДАС (двигатели с анодным слоем), очень к ним близкие, имеют совершенно другие принципы работы. Потенциал плазменных двигателей высок, однако, в ближайшем будущем единственным его применением будет корректировка орбиты МКС и других околоземных спутников. 2. Данный двигатель является гипотетическим. Принцип действия такого двигателя таков: фотоны имеют импульс, а это значит, что при истекании из сопла двигателя свет, являющийся в таком двигателе источником энергии, создаёт реактивную тягу. Космический корабль, оснащённый, таким двигателем, смог бы разогнаться до околосветовых скоростей и совершить полёт к далёким звёздам. Однако создание таких двигателей — дело далёкого будущего. Они не могут быть сконструированы и построены, поскольку многие из проблем в настоящее время нерешаемы даже теоретически. Всё сказанное конкретное о ракетных двигателях можно свести к одной цели — придать хаотичному характеру кинетической энергии необходимое общее направление.
Спасибо за внимание!
Елена