Материал на проверке

Урок решения экспериментальных задач по физике на тему «Механические колебания»

18
0
Победитель педагогического конкурса ‒ Конкурс на лучший урок-практикум по физике
Материал опубликован 11 September 2015 в группе

План урока.                                                                                                                                        

1. Класс разбивается на 7 групп по 2 человека.

2. Каждая группа получает задание на 30 минут.

3. На занятии каждая группа должна сделать 2-3 задания (одно задание элементарное, но с возможным подвохом; второе – простое, третье – сложное). Через 30 минут пары меняются местами.

4. Решение задачи оформляется на бланках с указанием необходимого оборудования, рисунка опыта, выводом уравнений и расчета искомого параметра.

5. Во всех заданиях теоретические и экспериментальные результаты следует предоставлять с учетом погрешности измерений. Методика расчета погрешности учащимся раздается.

6. Учащимся дают лишь тексты заданий. Приведенные ниже указания учащимся выдают в случае затруднений при выполнении работы, оценка за задание при этом снижается на балл.

7. В конце урока группы учащихся докладывают о своих результатах, обсуждают их и делают выводы.

8. Учитель подводит итоги, выставляет оценки (как среднее арифметическое за 2 задания).

Примечание: оцениваются не только совершенно верные ответы. Важно научиться искать ответы на вопросы или задачи. Поэтому оценка ставится за поиск решения и его обоснование.

 Метод расчета погрешности в экспериментальных заданиях. Здесь будет изображение: /data/edu/files/c1441997219.png (357x188)

1. Сравните периоды колебаний, полученные теоретически и эксперименталь­но.

2. Сде­лайте вывод о значимости полученных расхождений и причинах этого. Если расхождение теоретического и экспериментального результатов (Тт - Тэ) превышает сумму границ абсолютных по­грешностей измерений ∆Тт и ∆Tэ (рис. 1, а) 

 (Тт –Тэ > ∆Тт + ∆Tэ), то оно значимо. В этом случае надо указать существенные неучтенные факторы при теоретическом выводе формулы Т (например, вязкость жидкости, колебание воды, окружающей  пробирку,  и др.). Если расхождение результатов незна­чительно (рис. 1, б), т.е.  Тт –Тэ <∆Тт + ∆Tэ, то следует вывод о совпадении теоретиче­ского и экспериментального расчетов в пределах погрешностей эксперимента.

 

Задание элементарное, но с подвохом (выполняют все фронтально)

Определение ускорения свободного падения с помощью математического маятника

Оборудование: нить, гайка, линейка, секундомер 

Указания.

Т= 2π√L/g; g=4π²L/T². Период Т вычисляется по измерениям времени 10 колебаний: Т=t/N

После получения результата производится расчет погрешности. 

∆g = (│g1-gср│+│g2-gср│+│g3-gср│)/3

 

В работе необходимо оценить полученный результат и сделать вывод.

РS. Подвох заключается в том, что к подставке штатива изнутри прикреплен маленький, но сильный магнит. В результате ускорение свободного падения по расчетам получается больше 11м/c². Так как все ученики прекрасно знают численное значение g, у них возникает соблазн получить «точный» результат методом подгонки =)

При итоговом обсуждении ответы учащихся анализируются и магниты демонстрируются. «5» за данное задание получают те, к кого результат соответствует условиям проведения опыта и кто попытался объяснить полученный результат.

 

Задания простые.

Задание 1

Маятник на пружине. Если мы точно подберем массу груза и упругость пружины, то будем иметь прекрасную модель связанных колебаний. Если оттянуть пружину строго вертикально, то, как и следовало ожидать, возникают вертикальные колебания, но скоро они прекращаются, и груз начинает раскачиваться подобно маятнику часов (рис.3).
Однако через некоторое время груз снова будет колебаться вертикально. Каким-то образом энергия в системе переходит от одного вида колебаний к другому. Как подобрать массу груза, а также упругость и длину пружины, чтобы в системе осуществлялся такой периодический переход энергии? Почему он вообще происходит и с какой частотой? 

Оборудование: пружина, набор грузов, линейка, штатив, весы с разновесом, пластилин 

Указания.

Массу груза и жесткость пружины нужно подобрать так, чтобы частота чисто упругих колебаний совпадала с частотой чисто «маятниковых». Как только в системе начнутся колебания одного из этих типов, из-за изгиба пружины возникнут и другие колебания, и энергия колебаний первого типа будет «перекачиваться» колебаниям второго типа и наоборот. Т.о должно выполняться условие ℓ/g=m/k
Поэтому последовательность действий должна быть следующей:

1. Измерить длину пружины

2. Определить коэффициент жесткости пружины. Для этого подвесить груз на пружине и рассчитать k=mg/x, где х - растяжение пружины.

3. Затем рассчитать массу необходимого груза. m = ℓk/g.

4. С помощью пластилина довести массу до расчетной

5. Проверить экспериментально полученный результат

 

Дополнительная информация (раздается учащимся для ознакомления в случае правильного выполнения экспериментального задания). Здесь будет изображение: /data/edu/files/i1441998214.jpg (284x120)

Флаттер (от англ. flutter − дрожание, вибрация) − сочетание самовозбуждающихся незатухающих изгибающих и крутящих колебаний крыла, других элементов конструкции самолёта, главным образом крыла в полёте, либо несущего винта вертолёта, возникающих при достижении некоторой скорости, зависящей от характеристик данного самолёта (рис.2). Связь между двумя типами колебаний (изгибными и крутильными) крыла самолета одно время приводила к разрушению крыла.

 

Задание 2

Маятник длиной L совершает колебания на штативе. Под точкой подвеса маятника на расстоянии а=L/2 от нее На штативе закреплен стержень, препятствующий движению шарика. Найти период Т колебания такого маятника.

Оборудование: нить, груз, линейка, штатив с муфтой, лапкой и закрепленным посредине стержнем  (рис.5)

Указания.

Этот сложный колебательный процесс можно разбить на 2 колебательных процесса: с длиной нити маятника L и L/2. Здесь будет изображение: /data/edu/files/i1441998444.jpg (200x213)

Период колебания маятника длиной L равен Т1=2π√ℓ/g; маятника L/2 равен Т2=2π√L/2g. Период колебаний получившегося маятника равен Т=(Т1+Т2)/2=2π√L/g·(1+1/√2)≈3,42√L.

Измерив L, рассчитаем период Т.

 

Задание 3

Рассчитайте периоды малых колебаний груза на двух пружинах, соединенных

а) последовательно и 6) параллельно. Результа­ты расчетов проверьте экспериментально. Сделайте вывод. Здесь будет изображение: /data/edu/files/y1441998654.jpg (300x233)

Оборудование: штатив с муфтой и лапкой, две пружины от лабораторного динамометра, грузы массой 100 г из набора по механике, линейка измерительная.

Указания.

1. Получите формулы для расчета периодов колебаний груза на  пружинах. Обозначим массу груза m, а жест­кость каждой пружины k.

 При последователь­ном соединении пружин (рис. 6) жесткость kСl системы равна k/2, так как под действием той же силы, т. е. груза

(F = mg), удлинение системы будет в 2 раза больше, чем одной пружины. Поскольку период упругих колеба­ний груза определяется формулой: Тт1 = 2π√m/k, следовательно, в данном случае: Тт1 = 2π√2m/k         (1)                    

При параллельном соединении пружин (рис. 5) жесткость kС2 системы равна 2k; так как под действием той же силы (F = mg) удлинение системы будет в 2 раза меньше. Следовательно, период Тт2 упругих колеба­ний груза массой m в этом случае будет ра­вен

                                               Тт2 = 2π√m/2k                     (2)

Чтобы теоретически рассчитать Тт1 и Тт2 по формулам (1) и (2), нужно вначале узнать жесткость k одной пружины. Для этого под­весьте к ней груз известкой массы (m = 0,1 кг) и измерьте удлинение х пружины.  Вычислите k по формуле k = mg/x.

2. Определите теперь экспериментально периоды колебаний Тэ1 и Тэ2 груза на раз­ных установках (см. рис. 4 и 5). Для этого измерьте t1 и t 2- время колебаний груза в каждом случае и число совершенных за это время колебаний - N1 и N 2. Проведите рас­четы Тэ1 и Тэ2 по формулам:      

Тэ1= t1/N1;  

Тэ2= t2/N2

 

3. Сравните значения периодов колебаний систем, полученных теоретически и на опы­те - Тэ1 и Тэ2; Тт1 и Тт2. Сделайте вывод о значимости  или  незначительности  выявленных отклонений; укажите причины. 

 

Задание 4    

Определите отношение масс двух грузов и жесткостей двух пружин.

Оборудование: штатив с муфтой и лапкой, два груза разных масс m1 и m2 и две пружины разных жесткостей k1 и k2, ча­сы с секундной стрелкой. (рис.5) Здесь будет изображение: /data/edu/files/b1441999193.png (461x330)

Указания.

1. Подвесьте к штативу груз m1 на пружине жесткости k1 и приведите его в колебание. Частота колебаний груза ν11 (мы вводим двойную индексацию v: первый индекс показывает номер пружины, второй - груза) будет равна 

ν11= 1/2π√k1/m1                                (1)

Аналогично для второго груза, подвешенного на второй пружине:   ν22= 1/2π√k2/m2    (2)

2. Частоты ν11 и ν22 измерьте, подсчитав число колебаний N11 и N22 пружинных маят­ников за определенные промежутки времени:         

ν11= N11/t1                                       (3)

ν22= N22/t2

Выбрав t1 = t2  из выражений (1)-(3) получите:     

ν11/ ν22 = N11/ N22 = √(k1/ k2)∙(m2/ m1)  (4)

В  уравнении (4) два искомых отношения: k1/ k2 и m1/ m2.

3. Для их нахождения необходимо еще одно уравнение. Чтобы получить его, поме­няйте грузы местами: к пружине жесткостью k1 подвесьте груз массой m1, а к пружине жесткостью k2 — m2. Измерьте, как было описано в п. 2, частоты ν12 и ν21 новых пру­жинных маятников. Найдите отношение:   ν12/ ν21 = N12/ N21√(k1/ k2)∙(m1/ m2)     (5)

Решив систему уравнений (4) и (5), получите выражения для искомых отношений:

k1/ k2  = N11N12/ N22 N21                   m1/m2= N12N22/ N21 N11

4. Используя измеренные значения N11, N12, N21, N22 рассчитайте искомые - отно­шения

k1/ k2  и m1/m2.

Примечание для учителя. Эту задачу можно усложнить: не включать в оборудование часы. В этом случае один из маятников берут за эталон; его период остает­ся постоянным: Т0 = const.

Можно рассчитать отношение периодов колебаний T/T0 как функцию от m и k. Для это­го отклоните оба маятника от положения равновесия и отпустите; вы будете наблюдать вна­чале колебания обоих маятников в одной фа­зе, а далее фазы "разойдутся" в связи с не­точным равенством Т и Т0. Через некоторое время фазы колебаний вновь совпадут. Под­считайте через какое число N колебаний "математического" маятника это произойдет. При повторном совпадении фазы один из маятников совершит на 1 колебание больше или меньше, чем другой, т. е. будет выпол­няться соотношение: N0 Т0 = (N0 + l)T. Отсюда        Т/Т0= N0/(N0 + l)

 

Задания сложные.

Задание 5

Создайте вертикальные колебания пробир­ки с песком в сосуде с водой. Рассчитайте период вертикальных колебаний пробир­ки с песком в сосуде с водой. Создайте вертикальные колебания пробир­ки с песком в сосуде с водой. Результат расчета проверьте экспериментально, учтя при этом погрешности измерений. Сделайте заклю­чение.

 

Оборудование: сосуд с водой, пробирка, песок, весы и гири, часы с секундной стрелкой или секундомер, нить, линейка измерительная.

Указания.

1. Насыпьте в пробирку такое количество песка, чтобы она при погружении в сосуд с водой плавая в вертикальном положении. При небольшом нажатии пальцем на верхнюю часть пробирки возни­кают ее колебания.

2. Проведите теоретический расчет ко­лебаний пробирки. В состоянии равновесия сила тяжести пробирки с песком компенсируется выталкивающей силой. При малом смещении Х пробирки вниз, возникает дополнительная (за счет увеличения глубины погружения)   выталкивающая    сила   ∆Fа, направленная тоже вверх. Она равна по модулю                  ∆Fа = ρSxg,                                                                                   

где ρ – плотность воды, S - площадь внешнего сечения пробир­ки,

g  - ускорение свободного падения; эта сила ничем не компенсируется.

Запишите  это  выражение  силы  ∆Fа в проекции на вертикальную ось ОХ. Посколь­ку ось направлена вниз, ∆Fа = - ρSxg.   Если обозначить ρSg через k, то F = -kх,

Мы пришли к выводу, что пробирка совер­шает движение под действием силы типа

F = -kx. Значит, движение является гармо­ническим колебанием. В этом случае теоретически определенный период Тт равен   Тт = 2π√m/k.

Измерив с помощью весов и гирь массу m пробирки с песком, а с по­мощью нити и линейки длину ее окружности, рассчитайте площадь поперечного сечения пробирки

S= πR2=π(ℓ/2π) 2=πℓ2/4π2;  затем k:    k= ρSg   и период Т ее вертикальных ко­лебаний no формуле         Тт=2π√4 πm/ρℓ2 g.

Определите погрешности  измерений  при нахождении Тт

3. Проведите экспериментальную проверку расчета. Для этого определите опытным пу­тем период колебаний пробирки с песком, "заставив" ее совершить N полных колебаний и, измерив пошедшее на это время t,  период Тэ рассчитайте по формуле Тэ = t/n. Определите погрешности измерений при нахож­дении Тэ.

Методическое замечание. Желательно од­ной группе учащихся в качестве сосуда с водой дать химические стаканы большого диаметра, другой - мензурки малого диа­метра. При этом первая группа получит сов­падение теоретических и экспериментальных результатов (незначимое их расхождение), а для второй группы расхождение результатов может оказаться значимым. Итоги работ обе­их групп полезно обсудить.

 

Задание 6

Рассчитайте период малых колебаний столба воды в водяном манометре. Проверьте свой расчет экспериментально. Сделайте вы­вод.

 

Оборудование: водяной мано­метр, измерительная линейка, часы с секунд­ной стрелкой или секундомер, нить.Здесь будет изображение: /data/edu/files/g1441999383.jpg (141x210)

Указания.

1. Дунув в одно из колен манометра, возбудите колебания столба воды в нем.

2. Рассчитайте вначале теоретически пе­риод Тт этих колебаний. Для этого сделайте рисунок (рис. 9) и проанализируйте его: при изменении положения столба воды на вели­чину х разность уровней составит h=2х. За счет столба жидкости высотой 2х возникает до­полнительная сила F, модуль которой равен  F = 2 ρ Sxg,

где ρ - плотность жидкости, S-площадь поперечного сечения канала манометра, g - ускорение свободного падения.                                                           

В проекции   на   вертикальную, направленную вниз ось ОХ это уравнение будет иметь             вид:                                        F = -2ρSxg

Обозначив постоянную величину 2ρSxg через k, получим F = -kx, т. е. вода в мано­метре находится под воздействием силы, обеспечивающей гармонические колебания.

Период этих колебаний        Тт = 2π√m/k, где  m - масса колеблющейся воды.

Учтя, что m= ρSℓ, где ℓ- длина всего водяного столба в манометре, которую можно измерить с помощью нити и линейки, получим:         Тт=2π√ ρSℓ /2ρSg =2π√ ℓ/2g

3. Измерьте период колебаний столба во­ды в манометре. Для этого, возбудив колебания, определите время, в течение которого совершается N колебаний водяного столба, а затем рассчитайте Т’ по формуле Т= t/N

 

4. Сравните значения периодов Тт и Тэ, полученные теоретически и эксперименталь­но, и сделайте вывод о значимости расхожде­ний и их причинах.

 

Задание 7 

Чашка пружинных весов массой m1 совершает вертикальные гармонические колебания с амплитудой A (рис.10). Когда чашка находилась в крайнем нижнем положении, на нее положили груз массой m2. В результате колебания прекратились. Определите первоначальный период колебаний чашки.

Оборудование: пружина, 2 груза, линейка, штатив, весы с разновесом

Указания.

Колебания чашки весов массой m1 происходят относительно положения равновесия, в котором удлинение пружины Δxo определяется условием
                                                                      m1g = kΔxo,

где g − ускорение свободного падения, k − жесткость пружины.
В крайнем нижнем положении на чашку весов действует (по закону Гука) со стороны пружины сила упругости   , скорость движения чашки весов в этот момент равна нулю. Если в этот момент па чашку положить перегрузок массой m2, такой, чтобы сила тяжести чашки с перегрузком была равна силе упругости, то, очевидно, колебания прекратятся. Таким образом,     (m1 + m2)g = k(Δxo + A).

Приведенные равенства позволяют найти жесткость пружины:   k = m2g/A,
откуда для первоначального периода T колебаний чашки весов получаем
                                                           T = 2π√{m1/k} = 2π√{(m1A)/(m2g)}.

 

Примечание: При решении этой задачи часто допускается ошибка: забыв, что колебания совершаются относительно статического положения равновесия, жесткость пружины находят из условия (m1 + m2)g = kA.

 

Комментарии

Уважаемые участники! Команда жюри сформирована. Продолжается регистрация участников.

24 November 2017

Большое спасибо организаторам конкурса! Очень неожиданно и приятно видеть себя в числе победителей.

26 December 2017

Спасибо огромное! Я так рада!!!

26 December 2017

Отличный конкурс! Спасибо и я рад что победил! Остальным участникам спасибо большое за участие и соревновательность.Жюри особенная благодарность за проведенную работу!

26 December 2017

Здравствуйте! Скажите пожалуйста, когда будет выдан сертификат участника?

8 January 2018