Евклид и его "Начала"

4
0
Материал опубликован 9 June 2020 в группе

Автор публикации: Е. Лаврищева, ученица 7В класса

Муниципальное общеобразовательное

учреждение

Раменская средняя общеобразовательная

школа № 9
















ПРОЕКТ

Тема: «Евклид и его «Начала»»


Автор:

Лаврищева Екатерина,

ученица 7 «В» класса

Руководитель проеката:

Никифорова Ольга Валерьевна,

учитель математики














г. Раменское 2020







Содержание:

Введение

ГЛАВА 1 КТО ТАКОЙ ЕВКЛИД

БИОГРАФИЯ

ЛЕГЕНДЫ О ЕВКЛИДЕ

ТРУДЫ

ГЛАВА 2 «НАЧАЛА»

2.1 ОПИСАНИЕ ТРУДА

2.2 ЗНАЧЕНИЕ «НАЧАЛ»

ГЛАВА 3 ЕВКЛИДОВА ГЕОМЕТРИЯ

3.1 ВКЛАД ЕВКЛИДА В РАЗВИТИЕ ГЕОМЕТРИИ

3.2 ДРУГИЕ ЗАСЛУГИ ЕВКЛИДА

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ



















ВВЕДЕНИЕ

Тема данного проекта - « Еклид и его «Начала»»

Проблема: повысить интерес к предмету геометрия, к истории развития науки.

Актуальность заключается в том, что знание основ евклидовой геометрии является в настоящее время необходимым элементом общего образования во всем мире.

Область исследования: геометрия.

Цели проекта:

- расширить свои знания по теме «Евклид и его великая книга «Начала»;

- узнать больше о жизни Евклида;

- познакомится с знаменитой книгой «Начала» и другими трудами Евклида;

- проанализировать вклад Евклида в развитие геометрии;

- подготовиться к защите проектной работы.

Задачи проекта:

- найти и систематизировать информацию по выбранной теме;

- познакомиться с содержанием и основными понятиями «Начал» Евклида;

- выполнить презентацию;

- защитить проектную работу.

Гипотеза: Евклид- основатель геометрии, которую мы сейчас изучаем в школе.

Методы работы: Изучение литературы и ресурсов интернета по данной теме



ГЛАВА 1 КТО ТАКОЙ ЕВКЛИД

БИОГРАФИЯ

Дата рождения около 325 года до н.э

Место рождения неизвесно

Дата смерти до 265 года до н.э

Место смерти Александрия, Эллинистический Египет

Страна Древние Афины

Научная сфера математика(геометрия)

Евкли́д или Эвкли́д (др.-греч. Εὐκλείδης, от «добрая слава», время расцвета — около 300 года до н.э.)— древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Биографические сведения о Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в III веке до н.э.

Евклид— первый математик Александрийской школы. Его главная работа «Начала» (Στοιχεῖα, в латинизированной форме— «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвёл итог предшествующему развитию древнегреческой математики и создал фундамент дальнейшего развития математики. Из других его сочинений по математике надо отметить «О делении фигур», сохранившееся в арабском переводе, 4 книги «Конические сечения», материал которых вошёл в произведение того же названия Аполлония Пергского, а также «Поризмы», представление о которых можно получить из «Математического собрания» Паппа Александрийского. Евклид — автор работ по астрономии, оптике, музыке и др.







1.2 ЛЕГЕНДЫ О ЕВКЛИДЕ

До нас дошли только отдельные легенды о нем. Первый комментатор «Начал» Прокл (V век нашей эры) не мог указать, где и когда родился и умер Евклид. По Проклу, «этот ученый муж» жил в эпоху царствования Птолемея I. Некоторые биографические данные сохранились на страницах арабской рукописи XII века: «Евклид, сын Наукрата, известный под именем «Геометра», ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира».

Одна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не так-то просто. Тогда он призвал Евклида и попросил указать ему легкий путь к математике. «К геометрии нет царской дороги», — ответил ему ученый. Так в виде легенды дошло до нас это ставшее крылатым выражение. Царь Птолемей I, чтобы возвеличить свое государство, привлекал в страну ученых и поэтов, создав для них храм муз — Мусейон. Здесь были залы для занятий, ботанический и зоологический сады, астрономический кабинет, астрономическая башня, комнаты для уединенной работы и главное — великолепная библиотека. В числе приглашенных ученых оказался и Евклид, который основал в Александрии — столице Египта — математическую школу и написал для ее учеников свой фундаментальный труд. Именно в Александрии Евклид основывает математическую школу и пишет большой труд по геометрии, объединенный под общим названием «Начала» — главный труд своей жизни. Полагают, что он был написан около 325 года до нашей эры.

Также известен случай, когда один ученик поинтересовался у знаменитого математика, чем ему может оказаться выгодной геометрия в жизни. На что Евклид подозвал слугу и велел дать ученику три обола (денежная единица), сказав при этом:

Дай ему денег, раз ему хочется только прибыли от науки.

Другой древний математик – Папп – сообщает, что Евклид был необычайно мягок и добр по отношению к тем, кто, во-первых, мог бы помочь в распространении математики как науки, а во-вторых, если видел, что человек действительно испытывает тягу к геометрии. Он был способен даже изменить свое мнение о том или ином человеке, если вдруг узнавал, что того интересует или наоборот – не интересует – математика.

















































1.3 ТРУДЫ

Свои знания в планиметрии и стереометрии гениальный мыслитель формулировал в виде аксиом и постулатов. Система аксиом касалась четырёх понятий: точки, прямой, плоскости, движения, а также взаимоотношения этих понятий между собой.

Главный труд Евклида – «Начала» (или «Элементы», в оригинале «Стойхейа»). «Начала» Евклида состоят из 13 книг. Позднее к ним были прибавлены еще две книги. Книга содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел, алгебры, общей теории отношений и метода определения площадей и объемов, включающего элементы пределов (Метод исчерпывания). В "Началах" Евклид подытожил все предшествующие достижения греческой математики и создал фундамент для ее дальнейшего развития. Историческое значение "Начал" Евклида заключается в том, что в них впервые сделана попытка логического построения геометрии на основе аксиоматики. Основным недостатком аксиоматики Евклида следует считать ее неполноту; нет аксиом непрерывности, движения и порядка, поэтому Евклиду часто приходилось апеллировать к интуиции, доверять глазу. Книги XIV и XV являются более поздними добавлениями, но являются ли первые тринадцать книг созданием одного человека или школы, руководимой Евклидом, не известно. С 1482г. "Начала" Евклида выдержали более 500 изд. на всех языках мира.

Кроме "Начал" до нас дошли такие произведения Евклида: книга под латинским названием "Data" ("Данные") (с описанием условий, при которых какой-нибудь математический образ можно считать "данным"); книга по оптике (содержащая учение о перспективе), по катоптрике (излагающую теорию искажений в зеркалах), книга "Деление фигур". Не сохранилась педагогическая работа Эвклида "О ложных заключениях" (в математике). Эвклид написал также сочинения по астрономии ("Явления") и музыке.

Арабские учёные считают этого математика автором некоторых работ по механике и определению удельного веса тел.

ГЛАВА 2 «НАЧАЛА»

2.1 ОПИСАНИЕ ТРУДА

«Начала» Евклида состоят из 13 книг.

В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников.

Книга II, восходящая к пифагорейцам, посвящена так называемой «геометрической алгебре».

В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениями Гиппократа Хиосского.

В V книге вводится общая теория пропорций, построенная Евдоксом Книдским, а в VI книге она прилагается к теории подобных фигур.

VII—IX книги посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел (известный ныне как алгоритм Евклида), строятся чётные совершенные числа, доказывается бесконечность множества простых чисел.

В X книге, представляющей собой самую объёмную и сложную часть Начал, строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский.

XI книга содержит основы стереометрии.

В XII книге с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию является Евдокс Книдский. Наконец, XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским.

В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. XIV книга принадлежит александрийцу Гипсиклу (ок. 200г. До н.э.), а XV книга создана во время жизни Исидора Милетского, строителя храма св. Софии в Константинополе (начало VI в. н.э.).

«Начала» предоставляют общую основу для последующих геометрических трактатов Архимеда, Аполлония и других античных авторов; доказанные в них предложения считаются общеизвестными. Комментарии к «Началам» в античности составляли Герон, Порфирий, Папп, Прокл, Симпликий. Сохранился комментарий Прокла к I книге, а также комментарий Паппа к X книге (в арабском переводе). От античных авторов комментаторская традиция переходит к арабам, а потом и в Средневековую Европу.

В создании и развитии науки Нового времени «Начала» также сыграли важную идейную роль. Они оставались образцом математического трактата, строго и систематически излагающего основные положения той или иной математической науки.





























2.2 ЗНАЧЕНИЕ «НАЧАЛ»

Историческое значение "Начал" Евклида заключается в том, что в них впервые сделана попытка логического построения геометрии на основе аксиоматики. Аксиоматический метод, господствующий в современной математике, своим происхождением в большой степени обязан "Началам" Евклида.

Основным недостатком аксиоматики Евклида следует считать ее неполноту; здесь нет аксиом непрерывности, движения и порядка, поэтому Евклиду часто приходится апеллировать к интуиции, доверяться глазу. Что касается определений точки, линии, прямой, поверхности и плоскости, то их значение заключается в том, что они отражают естественный процесс образования этих понятий.

Ни одна научная книга не пользовалась таким большим и длительным успехом, как "Начала" Евклида. С 1482 она выдержала более 500 изданий на всех языках мира. Кроме упомянутых "Начал", до нас дошли такие произведения Евклида: книга под латинским названием "Data" ("Данные"), содержанием которой является определение условий, когда какой-нибудь математический образ можно считать "данным"; книга по оптике (содержащая учение о перспективе) и книга по катоптрике (излагающая теорию искажений в зеркалах), а также "Деление фигур".

Математики более позднего времени - Папп и Д. Прокол - упоминают и ссылаются на недошедшие до нас работы Евклида: четыре книги о комических сечениях, материал которых вошел в произведения Аполлония Пергского; две книги о местах на поверхности; три книги "Поризмы", содержание которых до сих пор до конца не выяснено.

Не сохранилась и педагогическая работа "О ложных заключениях" (в математике). Евклид написал также сочинения по астрономии ("Явления") и музыке. Дошедшие до нас произведения Евклида собраны в критическом издании Гейберга и Менге (Лейпциг, 1883-1916), в котором помещены греческие подлинники, латинские переводы и комментарии позднейших авторов.

















































ГЛАВА 3 ЕВКЛИДОВА ГЕОМЕТРИЯ

3.1 ВКЛАД ЕВКЛИДА В РАЗВИТИЕ ГЕОМЕТРИИ

Евкли́дова геоме́трия (или элементарная геометрия) — геометрическая теория, основанная на системе аксиом, впервые изложенной в «Началах» Евклида (III век до н. э.). Элементарная геометрия — геометрия, определяемая в основном группой перемещений (изометрий) и группой подобия. Однако содержание элементарной геометрии не исчерпывается указанными преобразованиями. К элементарной геометрии также относят преобразование инверсии, вопросы сферической геометрии, элементы геометрических построений, теорию измерения геометрических величин и другие вопросы.

Элементарную геометрию часто называют евклидовой геометрией, так как первоначальное и систематическое её изложение, хотя и недостаточно строгое, было в «Началах» Евклида. Первая строгая аксиоматика элементарной геометрии была дана Гильбертом. Элементарная геометрия изучается в средней общеобразовательной школе. Задача аксиоматизации элементарной геометрии состоит в построении системы аксиом так, чтобы все утверждения евклидовой геометрии следовали из этих аксиом чисто логическим выводом без наглядности чертежей.

В «Началах» Евклида была дана следующая система аксиом:

- от всякой точки до всякой точки можно провести прямую;

- ограниченную прямую можно непрерывно продолжать по прямой;

- из всякого центра всяким радиусом может быть описан круг;

- все прямые углы равны между собой;

- если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых углов, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых углов;

Эта система была достаточна для того, чтобы один математик понял другого.

Евклидова геометрия — это, попросту говоря, тот самый предмет, который мы изучаем в школе как «геометрию». Та геометрия, которую придумал Евклид, очень точно описывает физическое пространство нашего с вами мира.











































3.2 ДРУГИЕ ЗАСЛУГИ ЕВКЛИДА

Теорема Евклида о простых числах:

множество простых чисел является бесконечным ("Начала" Евклида, книга IX, теорема 20). Более точную количественную информацию о множествепростых чисел в натуральном ряде содержит Чебышева теорема о простыхчислах и асимптотич. закон распределения простых чисел.

Евклидово поле - упорядоченное поле, в к-ром каждый положительный элемент является квадратом. Напр., поле R действительных чисел - Е. п. Поле Q рациональных чисел не является Е. п. в. Л. Попов.

Евклидово пространство - пространство, свойства к-рого описываются аксиомами евклидовой геометрии. В более общем смысле Е. п.- конечномерное действительное векторное пространство Rn со скалярным произведением (х, у), х, к-рое в надлежащим образом выбранных координатах (декартовых) выражается формулой

Алгори́тм Евкли́да — алгоритм для нахождения наибольшего общего делителя двух целых чисел. Этот алгоритм применим также для нахождения наибольшего общего делителя многочленов, кольца в которых применим алгоритм Евклида получили название Евклидовы кольца.























ЗАКЛЮЧЕНИЕ

Подводя итог, можно говорить о том, что Евклид и его «Начала» имеют действительно огромное значение для науки. Систематизировав и обобщив прошлые достижения математиков, сделав свои открытия, Евклид создал фундаментальный труд, который стал важной частью современной математики и геометрии.

И хотя нам практически ничего не известно о том, каким человеком был Евклид, и как проходила его научная деятельность, но результат этой деятельности, несомненно, вызывает восхищение и уважение. Евклид стал своего рода границей в науке, собрав воедино научные достижения прошлого и дав сильный задел для развития исследований будущего.

В честь этого учёного названы космический летательный аппарат для изучения геометрии темной материи, город в США, алгоритм для получения традиционного музыкального ритма и многие математические открытия более позднего времени.




























СПИСОК ЛИТЕРАТУРЫ

Книги:

1. Адкинс Р. Древняя Греция. Энциклопедический справочник. М., 2008, с. 447.

2. Алимов Н. Г. Величина и отношение у Евклида // Историко-математические исследования. Вып. 8. — 1955. — С. 573—619.

2. Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин, А.А. Гусейнов, Г.Ю. Семигин. М., Мысль, 2010, т. II, Е – М, с. 10.

3. Прокл Диадох. Комментарии к первой книге «Начал» Евклида. Введение. Пер. и комм. Ю. А. Шичалина. М.: ГЛК, 1994.

4. Прокл Диадох. Комментарий к первой книге «Начал» Евклида / Перевод А. И. Щетникова. — М.: Русский фонд содействия образованию и науке, 2013.

5. Философский словарь. Под ред. И.Т. Фролова. М., 1991, с. 133.

6. Цейтен Г. Г. История математики в древности и в средние века. — М.-Л.: ОНТИ, 1938.

Интернет-ресурсы:

1. http://subscribe.ru/archive/history.povny

2. https://ru.wikipedia.org

3. https://math.ru/history/people/Euclid














Презентация к проекту
PPTX / 1.46 Мб

в формате Microsoft Word (.doc / .docx)
Комментарии
Комментариев пока нет.