Исследовательская работа "Криптографические способы шифрования информации"

0
0
Материал опубликован 8 December 2020

Автор публикации: А. Бородин, студент 2 курса

Бюджетное профессиональное образовательное учреждение

Орловской области «Орловский технический колледж»




Исследовательская работа

t1607446716aa.gif

«КРИПТОГРАФИЧЕСКИЕ СПОСОБЫ ШИФРОВАНИЯ ИНФОРМАЦИИ»

t1607446716ab.jpg



Подготовил студент 2 курса специальности 35.02.08 «Электрификация и автоматизация сельского хозяйства»

Бородин А. В.

Руководители: Черная М. Н.






Орел, 2020

Содержание

Введение 3

1 Теоретическая часть 5

1.1 Периоды развития и этапы криптографии 5

1.2 Современная криптография 10

1.3 Управление криптографическими ключами 11

1.4 Симметричная (секретная) методология 12

1.5 Асимметричная (открытая) методология 14

1.6 Простейшие методы шифрования текстовой информации 18

2 Практическая часть 23

Заключение 25

Список используемой литературы 27

Введение

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была своеобразной криптографической системой, так как в древних обществах ею владели только избранные. Священные книги древнего Египта, древней Индии тому примеры. История человеческой цивилизации стала также историей создания систем безопасной передачи информации. Искусство шифрования и тайной передачи информации было присуще практически всем государствам. Криптография в прошлом использовалась, прежде всего, в военных целях.

Сейчас, по мере образования информационного общества, криптография становится одним из основных инструментов, обеспечивающих конфиденциальность, доверие, авторизацию, корпоративную безопасность и бесчисленное множество других важных вещей. Практическое применение криптографии стало неотъемлемой частью жизни современного общества — её используют в таких отраслях как электронная коммерция, электронный документооборот (включая цифровые подписи), телекоммуникации и других.

Исторически первой задачей криптографии была защита передаваемых текстовых сообщений от несанкционированного ознакомления с их содержанием, что нашло отражение в самом названии этой дисциплины, эта защита базируется на использовании «секретного языка», известного только отправителю и получателю, все методы шифрования являются лишь развитием этой философской идеи.

Целью исследовательской работы является изготовление стенда для кабинета информатики, который можно использовать на уроках и во внеурочной деятельности

Задачи:

выяснить способы периодизации развития криптографии;

описать простейшие шифры текстовой информации;

создать новый стенд «Криптографические способы шифрования информации».

Гипотеза: с усложнением информационных взаимодействий в человеческом обществе возникли и продолжают возникать новые задачи по их защите, некоторые из них были решены в рамках криптографии, что потребовало развития принципиально новых подходов и методов. 

Объект исследования: криптография.

Предмет исследования: криптографические способы шифрования информации.

Используемое оборудование: ПК, доступ в сеть Интернет, принтер.




















1 Теоретическая часть

1.1 Периоды развития и этапы криптографии

Криптография - наука о способах преобразования (шифрования) информации с целью ее защиты от незаконных пользователей.

История криптографии насчитывает около 4 тысяч лет. В качестве основного критерия периодизации криптографии возможно использовать технологические характеристики используемых методов шифрования. В данном реферате будем придерживаться такой периодизации.

Первый период (приблизительно с 3-го тысячелетия до н.э.) характеризуется господством моноалфавитных шифров (основной принцип – замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами).

Второй период (хронологические рамки – с IX века на Ближнем Востоке (Ал-Кинди) и с XV века в Европе (Леон Баттиста Альберти) – до начала XX века) ознаменовался введением в обиход полиалфавитных шифров.

Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических устройств в работу шифровальщиков. При этом продолжалось использование полиалфавитных шифров.

Четвёртый период – с середины до 70-х годов XX века – период перехода к математической криптографии. В работе Клода Шеннона появляются строгие математические определения количества информации, передачи данных, энтропии, функций шифрования. Обязательным этапом создания шифра считается изучение его уязвимости к различным известным атакам – линейному и дифференциальному криптоанализу. Однако до 1975 года криптография оставалась «классической», или же, более корректно, криптографией с секретным ключом.

Современный период развития криптографии (с конца 1970-х годов по настоящее время) отличается зарождением и развитием нового направления – криптография с открытым ключом. Её появление знаменуется не только новыми техническими возможностями, но и сравнительно широким распространением криптографии для использования частными лицами (в предыдущие эпохи использование криптографии было исключительной прерогативой государства). Правовое регулирование использования криптографии частными лицами в разных странах сильно различается – от разрешения до полного запрета.

Историю криптографии условно можно также разделить на 4 этапа:

Наивная криптография.

Формальная криптография

Научная криптография

Компьютерная криптография

Для наивной криптографии (до нач. XVI века) характерно использование любых (обычно примитивных) способов запутывания противника относительно содержания шифруемых текстов. На начальном этапе для защиты информации использовались методы кодирования и стеганографии, которые родственны, но не тождественны криптографии. Большинство из используемых шифров сводились к перестановке или моноалфавитной подстановке. Одним из первых зафиксированных примеров является шифр Цезаря, состоящий в замене каждой буквы исходного текста на другую, отстоящую от нее в алфавите на определенное число позиций. Другой шифр, полибианский квадрат, авторство которого приписывается греческому писателю Полибию, является общей моноалфавитной подстановкой, которая проводится с помощью случайно заполненной алфавитом квадратной таблицей (для греческого алфавита размер составляет 5x5). Каждая буква исходного текста заменяется на букву, стоящую в квадрате снизу от нее.

Этап формальной криптографии (кон. XV века - нач. XX века) связан с появлением формализованных и относительно стойких к ручному криптоанализу шифров. В европейских странах это произошло в эпоху Возрождения, когда развитие науки и торговли вызвало спрос на надежные способы защиты информации. Важная роль на этом этапе принадлежит Леону Батисте Альберти, итальянскому архитектору, который одним из первых предложил многоалфавитную подстановку. Данный шифр, получивший имя дипломата XVI века Блеза Вижинера, состоял в последовательном «сложении» букв исходного текста с ключом (процедуру можно облегчить с помощью специальной таблицы). Его работа «Трактат о шифре» считается первой научной работой по криптологии. Одной из первых печатных работ, в которой обобщены и сформулированы известные на тот момент алгоритмы шифрования является труд «Полиграфия» немецкого аббата Иоганна Трисемуса. Ему принадлежат два небольших, но важных открытия: способ заполнения полибианского квадрата (первые позиции заполняются с помощью легко запоминаемого ключевого слова, остальные - оставшимися буквами алфавита) и шифрование пар букв (биграмм). Простым, но стойким способом многоалфавитной замены (подстановки биграмм) является шифр Плейфера, который был открыт в начале XIX века Чарльзом Уитстоном. Уитстону принадлежит и важное усовершенствование - шифрование «двойным квадратом». Шифры Плейфера и Уитстона использовались вплоть до первой мировой войны, так как с трудом поддавались ручному криптоанализу. В XIX веке голландец Керкхофф сформулировал главное требование к криптографическим системам, которое остается актуальным и поныне: секретность шифров должна быть основана на секретности ключа, но не алгоритма. Наконец, последним словом в донаучной криптографии, которое обеспечили еще более высокую криптостойкосить, а также позволило автоматизировать (в смысле механизировать) процесс шифрования стали роторные криптосистемы. Одной из первых подобных систем стала изобретенная в 1790 году Томасом Джефферсоном, будущим президентом США механическая машина. Многоалфавитная подстановка с помощью роторной машины реализуется вариацией взаимного положения вращающихся роторов, каждый из которых осуществляет «прошитую» в нем подстановку. Практическое распространение роторные машины получили только в начале XX века. Одной из первых практически используемых машин, стала немецкая Enigma, разработанная в 1917 году Эдвардом Хеберном и усовершенствованная Артуром Кирхом. Роторные машины активно использовались во время второй мировой войны. Помимо немецкой машины Enigma использовались также устройства Sigaba (США), Турех (Великобритания), Red, Orange и Purple2 (Япония). Роторные системы - вершина формальной криптографии так как относительно просто реализовывали очень стойкие шифры. Успешные криптоатаки на роторные системы стали возможны только с появлением ЭВМ в начале 40-х годов.

Главная отличительная черта научной криптографии (30-е - 60-е годы XX века) - появление криптосистем со строгим математическим обоснованием криптостойкости. К началу 30-х годов окончательно сформировались разделы математики, являющиеся научной основой криптологии: теория вероятностей и математическая статистика, общая алгебра, теория чисел, начали активно развиваться теория алгоритмов, теория информации, кибернетика. Своеобразным водоразделом стала работа Клода Шеннона «Теория связи в секретных системах», где сформулированы теоретические принципы криптографической защиты информации. Шеннон ввел понятия «рассеивание» и «перемешивание», обосновал возможность создания сколь угодно стойких криптосистем. В 60-х годах ведущие криптографические школы подошли к созданию блочных шифров, еще более стойких по сравнению с роторными криптосистемами, однако допускающие практическую реализацию только в виде цифровых электронных устройств.

Компьютерная криптография (с 70-х годов XX века) обязана своим появлением вычислительным средствам с производительностью, достаточной для реализации критосистем, обеспечивающих при большой скорости шифрования на несколько Примерно в 1900 году до н. э. древние египтяне начали видоизменять и искажать иероглифы, чтобы закодировать определенные сообщения. порядков более высокую криптостойкость, чем «ручные» и «механические» шифры. Первым классом криптосистем, практическое применение которых стало возможно с появлением мощных и компактных вычислительных средств, стали блочные шифры. В 70-е годы был разработан американский стандарт шифрования DES (принят в 1978 году). Один из его авторов, Хорст Фейстел (сотрудник IBM), описал модель блочных шифров, на основе которой были построены другие, более стойкие симметричные криптосистемы, в том числе отечественный стандарт шифрования ГОСТ 28147-89. С появлением DES обогатился и криптоанализ, для атак на американский алгоритм был создано несколько новых видов криптоанализа (линейный, дифференциальный и т.д.), практическая реализация которых опять же была возможна только с появлением мощных вычислительных систем. В середине 70-х годов произошел настоящий прорыв в современной криптографии - появление асимметричных криптосистем, которые не требовали передачи секретного ключа между сторонами. Здесь отправной точкой принято считать работу, опубликованную Уитфилдом Диффи и Мартином Хеллманом в 1976 году под названием «Новые направления в современной криптографии». В ней впервые сформулированы принципы обмена шифрованной информацией без обмена секретным ключом. Независимо к идее асимметричных криптосистем подошел Ральф Меркли. Несколькими годами позже Рон Ривест, Ади Шамир и Леонард Адлеман открыли систему RSA, первую практическую асимметричную криптосистему, стойкость которой была основана на проблеме факторизации больших простых чисел. Асимметричная криптография открыла сразу несколько новых прикладных направлений, в частности системы электронной цифровой подписи (ЭЦП) и электронных денег. В 80-90-е годы появились совершенно новые направления криптографии: вероятностное шифрование, квантовая криптография и другие. Осознание их практической ценности еще впереди. Актуальной остается и задача совершенствования симметричных криптосистем. В 80-90-х годах были разработаны нефейстеловские шифры (SAFER, RC6 и др.), а в 2000 году после открытого международного конкурса был принят новый национальный стандарт шифрования США - AES.


1.2 Современная криптография

Современная криптография включает в себя четыре крупных раздела:

Симметричные криптосистемы.

Криптосистемы с открытым ключом.

Системы электронной подписи.

Управление ключами.

Криптографическими средствами защиты называются специальные средства и методы преобразования информации, в результате которых маскируется ее содержание.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

Криптографические методы можно разбить на два класса:

обработка информации путем замены и перемещения букв, при котором объем данных не меняется (шифрование);

сжатие информации с помощью замены отдельных сочетаний букв, слов или фраз (кодирование).

По способу реализации криптографические методы возможны в аппаратном и программном исполнении.

Для защиты текстовой информации при передачах на удаленные станции телекоммуникационной сети используются аппаратные способы шифрования и кодирования. Для обмена информацией между ЭВМ по телекоммуникационной сети, а также для работы с локальными абонентами возможны как аппаратные, так и программные способы. Для хранения информации на магнитных носителях применяются программные способы шифрования и кодирования.

Аппаратные способы шифрования информации применяются для передачи защищенных данных по телекоммуникационной сети.

Для реализации шифрования с помощью смешанного алфавита используется перестановка отдельных разрядов в пределах одного или нескольких символов.

Программные способы применяются для шифрования информации, хранящейся на магнитных носителях (дисках, лентах). Это могут быть данные различных информационно-справочных систем АСУ, АСОД и др. программные способы шифрования сводятся к операциям перестановки, перекодирования и сложения по модулю 2 с ключевыми словами.

Особое место в программах обработки информации занимают операции кодирования. Преобразование информации, в результате которого обеспечивается изменение объема памяти, занимаемой данными, называется кодированием. На практике кодирование всегда используется для уменьшения объема памяти, так как экономия памяти ЭВМ имеет большое значение в информационных системах. Кроме того, кодирование можно рассматривать как криптографический метод обработки информации.


1.3 Управление криптографическими ключами


Под ключом в криптографии понимают сменный элемент шифра, который применяется для шифрования конкретного сообщения. В последнее время безопасность защищаемой информации стала определяться в первую очередь ключом. Сам шифр, шифрмашина или принцип шифрования стали считать известными противнику и доступными для предварительного изучения, но в них появился неизвестный для противника ключ, от которого существенно зависят применяемые преобразования информации. Теперь законные пользователи, прежде чем обмениваться шифрованными сообщениями, должны тайно от противника обменяться ключами или установить одинаковый ключ на обоих концах канала связи. А для противника появилась новая задача - определить ключ, после чего можно легко прочитать зашифрованные на этом ключе сообщения.

Отметим теперь, что не существует единого шифра, подходящего для всех случаев. Выбор способа шифрования зависит от особенностей информации, ее ценности и возможностей владельцев по защите своей информации. Прежде всего подчеркнем большое разнообразие видов защищаемой информации: документальная, телефонная, телевизионная, компьютерная и т.д. Каждый вид информации имеет свои специфические особенности, и эти особенности сильно влияют на выбор методов шифрования информации. Большое значение имеют объемы и требуемая скорость передачи шифрованной информации. Выбор вида шифра и его параметров существенно зависит от характера защищаемых секретов или тайны.

Некоторые тайны (например, государственные, военные и др.) должны сохраняться десятилетиями, а некоторые (например, биржевые) - уже через несколько часов можно разгласить. Необходимо учитывать также и возможности того противника, от которого защищается данная информация. Одно дело - противостоять одиночке или даже банде уголовников, а другое дело - мощной государственной структуре.

Любая современная криптографическая система основана (построена) на использовании криптографических ключей. Она работает по определенной методологии (процедуре), состоящей из: одного или более алгоритмов шифрования (математических формул); ключей, используемых этими алгоритмами шифрования; системы управления ключами; незашифрованного текста; и зашифрованного текста (шифртекста).


1.4 Симметричная (секретная) методология


В этой методологии и для шифрования, и для расшифровки отправителем и получателем применяется один и тот же ключ, об использовании которого они договорились до начала взаимодействия. Если ключ не был скомпрометирован, то при расшифровке автоматически выполняется аутентификация отправителя, так как только отправитель имеет ключ, с помощью которого можно зашифровать информацию, и только получатель имеет ключ, с помощью которого можно расшифровать информацию. Так как отправитель и получатель - единственные люди, которые знают этот симметричный ключ, при компрометации ключа будет скомпрометировано только взаимодействие этих двух пользователей. Проблемой, которая будет актуальна и для других криптосистем, является вопрос о том, как безопасно распространять симметричные (секретные) ключи.

Алгоритмы симметричного шифрования используют ключи не очень большой длины и могут быстро шифровать большие объемы данных.

Порядок использования систем с симметричными ключами:

1. Безопасно создается, распространяется и сохраняется симметричный секретный ключ.

2. Отправитель создает электронную подпись с помощью расчета хэш-функции для текста и присоединения полученной строки к тексту

3. Отправитель использует быстрый симметричный алгоритм шифрования- расшифровки вместе с секретным симметричным ключом к полученному пакету (тексту вместе с присоединенной электронной подписью) для получения зашифрованного текста. Неявно таким образом производится аудентификация, так как только отправитель знает симметричный секретный ключ и может зашифровать этот пакет. Только получатель знает симметричный секретный ключ и может расшифровать этот пакет.

4. Отправитель передает зашифрованный текст. Симметричный секретный ключ никогда не передается по незащищенным каналам связи.

5. Получатель использует тот же самый симметричный алгоритм шифрования- расшифровки вместе с тем же самым симметричным ключом (который уже есть у получателя) к зашифрованному тексту для восстановления исходного текста и электронной подписи. Его успешное восстановление аутентифицирует кого-то, кто знает секретный ключ.

6. Получатель отделяет электронную подпись от текста.

7. Получатель создает другую электронную подпись с помощью расчета хэш- функции для полученного текста.

8. Получатель сравнивает две этих электронных подписи для проверки целостности сообщения (отсутствия его искажения).


1.5 Асимметричная (открытая) методология


В этой методологии ключи для шифрования и расшифровки разные, хотя и создаются вместе. Один ключ делается известным всем, а другой держится в тайне. Данные, зашифрованные одним ключом, могут быть расшифрованы только другим ключом.

Все асимметричные криптосистемы являются объектом атак путем прямого перебора ключей, и поэтому в них должны использоваться гораздо более длинные ключи, чем те, которые используются в симметричных криптосистемах, для обеспечения эквивалентного уровня защиты. Это сразу же сказывается на вычислительных ресурсах, требуемых для шифрования, хотя алгоритмы шифрования на эллиптических кривых могут смягчить эту проблему.

Для того чтобы избежать низкой скорости алгоритмов асимметричного шифрования, генерируется временный симметричный ключ для каждого сообщения и только он шифруется асимметричными алгоритмами. Само сообщение шифруется с использованием этого временного сеансового ключа и алгоритма шифрования/расшифровки, ранее описанного. Затем этот сеансовый ключ шифруется с помощью открытого асимметричного ключа получателя и асимметричного алгоритма шифрования. После этого этот зашифрованный сеансовый ключ вместе с зашифрованным сообщением передается получателю.

Получатель использует тот же самый асимметричный алгоритм шифрования и свой секретный ключ для расшифровки сеансового ключа, а полученный сеансовый ключ используется для расшифровки самого сообщения.

В асимметричных криптосистемах важно, чтобы сеансовые и асимметричные ключи были сопоставимы в отношении уровня безопасности, который они обеспечивают.

Если используется короткий сеансовый ключ (например, 40-битовый DES), то не имеет значения, насколько велики асимметричные ключи. Асимметричные открытые ключи уязвимы к атакам прямым перебором отчасти из-за того, что их тяжело заменить. Если атакующий узнает секретный асимметричный ключ, то будет скомпрометирован не только текущее, но и все последующие взаимодействия между отправителем и получателем.

Порядок использования систем с асимметричными ключами:

1. Безопасно создаются и распространяются асимметричные открытые и секретные ключи. Секретный асимметричный ключ передается его владельцу. Открытый асимметричный ключ хранится в базе данных и администрируется центром выдачи сертификатов. Подразумевается, что пользователи должны верить, что в такой системе производится безопасное создание, распределение и администрирование ключами. Более того, если создатель ключей и лицо или система, администрирующие их, не одно и то же, то конечный пользователь должен верить, что создатель ключей на самом деле уничтожил их копию.

2. Создается электронная подпись текста с помощью вычисления его хэш-функции. Полученное значение шифруется с использованием асимметричного секретного ключа отправителя, а затем полученная строка символов добавляется к передаваемому тексту (только отправитель может создать электронную подпись).

3. Создается секретный симметричный ключ, который будет использоваться для шифрования только этого сообщения или сеанса взаимодействия (сеансовый ключ), затем при помощи симметричного алгоритма шифрования/расшифровки и этого ключа шифруется исходный текст вместе с добавленной к нему электронной подписью - получается зашифрованный текст (шифр-текст).

4. Теперь нужно решить проблему с передачей сеансового ключа получателю сообщения.

5. Отправитель должен иметь асимметричный открытый ключ центра выдачи сертификатов. Перехват незашифрованных запросов на получение этого открытого ключа является распространенной формой атаки. Может существовать целая система сертификатов, подтверждающих подлинность открытого ключа.

6. Отправитель запрашивает у центра сертификатов асимметричный открытый ключ получателя сообщения. Этот процесс уязвим к атаке, в ходе которой атакующий вмешивается во взаимодействие между отправителем и получателем и может модифицировать трафик, передаваемый между ними.

Поэтому открытый асимметричный ключ получателя "подписывается" у центра сертификатов. Это означает, что центр сертификатов использовал свой асимметричный секретный ключ для шифрования асимметричного открытого ключа получателя. Только центр сертификатов знает асимметричный секретный ключ, поэтому есть гарантии того, что открытый асимметричный ключ получателя получен именно от него.

7. После получения асимметричный открытый ключ получателя расшифровывается с помощью асимметричного открытого ключа и алгоритма асимметричного шифрования/расшифровки. Естественно, предполагается, что центр сертификатов не был скомпрометирован. Если же он оказывается скомпрометированным, то это выводит из строя всю сеть его пользователей. Поэтому можно и самому зашифровать открытые ключи других пользователей, но где уверенность в том, что они не скомпрометированы?

8. Теперь шифруется сеансовый ключ с использованием асимметричного алгоритма шифрования-расшифровки и асимметричного ключа получателя (полученного от центра сертификатов и расшифрованного).

9. Зашифрованный сеансовый ключ присоединяется к зашифрованному тексту (который включает в себя также добавленную ранее электронную подпись).

10. Весь полученный пакет данных (зашифрованный текст, в который входит помимо исходного текста его электронная подпись, и зашифрованный сеансовый ключ) передается получателю. Так как зашифрованный сеансовый ключ передается по незащищенной сети, он является очевидным объектом различных атак.

11. Получатель выделяет зашифрованный сеансовый ключ из полученного пакета.

12. Теперь получателю нужно решить проблему с расшифровкой сеансового ключа.

13. Получатель должен иметь асимметричный открытый ключ центра выдачи сертификатов.

14. Используя свой секретный асимметричный ключ и тот же самый асимметричный алгоритм шифрования получатель расшифровывает сеансовый ключ.

15. Получатель применяет тот же самый симметричный алгоритм шифрования- расшифровки и расшифрованный симметричный (сеансовый) ключ к зашифрованному тексту и получает исходный текст вместе с электронной подписью.

16. Получатель отделяет электронную подпись от исходного текста.

17. Получатель запрашивает у центра сертификатов асимметричный открытый ключ отправителя.

18. Как только этот ключ получен, получатель расшифровывает его с помощью открытого ключа центр сертификатов и соответствующего асимметричного алгоритма шифрования-расшифровки.

19. Затем расшифровывается хэш-функция текста с использованием открытого ключа отправителя и асимметричного алгоритма шифрования-расшифровки.

20. Повторно вычисляется хэш-функция полученного исходного текста.

21. Две эти хэш-функции сравниваются для проверки того, что текст не был изменен.

1.6 Простейшие методы шифрования текстовой информации


На протяжении всей истории, человечество неоднократно прибегало к использованию кодов не только исходя из желания скрыть личные данные, но и в стратегических интересах в процессе воин и политических конфликтов.

Не имеет абсолютно никакого смысла перечислять все многочисленные типы шифрования, в данной исследовательской работы мы рассмотрим лишь простейшие методы шифрования текстовой информации.

1.Система шифрования Цезаря –это вид шифра подстановки, в котором каждый символ в открытом тексте заменяется символом, находящимся на некотором постоянном числе позиций левее или правее него в алфавите. Например, в шифре со сдвигом в право на 3, А была бы заменена на Г, Б станет Д, и так далее.

Пример: Зашифруем сообщение методом Цезаря: «Информатика»

Шаг1: Берем русский алфавит:

А

Б

В

Г

Д

Е

Ё

Ж

З

И

Й

К

Л

М

Н

О

П

Р

С

Т

У

Ф

Х

Ц

Ч

Ш

Щ

Ъ

Ы

Ь

Э

Ю

Я




Шаг 2: Записываем исходное слово:

Исходное слово:

И

Н

Ф

О

Р

М

А

Т

И

К

А

Шаг 3: Используя алфавит, мы начинаем шифровать слово с интервалом на 3 влево, так буква И станет буквой Ж и т.д

t1607446716ac.gift1607446716ad.gif

А

Б

В

Г

Д

Е

Ё

Ж

З

И

Й

К

Л

М

Н

О

П

Р

С

Т

У

Ф

Х

Ц

Ч

Ш

Щ

Ъ

Ы

Ь

Э

Ю

Я




Тогда мы получим следующее:

Исходное слово:

И

Н

Ф

О

Р

М

А

Т

И

К

А

Итоговое слово:

Ж

Л

Т

М

О

К

Ю

Р

Ж

И

Ю

2. Квадрат Полибия (англ. Polybiussquare), также известный как шахматная доска Полибия — оригинальный код простой замены, одна из древнейших систем кодирования, предложенная Полибием (греческий историк, полководец, государственный деятель, IIIвек до н.э.). Данный вид кодирования изначально применялся для греческого алфавита, но затем был распространен на другие языки.

Несмотря на то, что квадрат изначально создавался для кодирования с его помощью можно успешно шифровать. Для того, чтобы зашифровать текст квадратом Полибия нужно сделать несколько шагов:

Шаг 1: Формирование таблицы шифрования - к каждому языку отдельно составляется таблица шифрования с одинаковым (не обязательно) количеством пронумерованных строк и столбцов, параметры которой зависят от его мощности (количества букв в алфавите). Берутся два целых числа, произведение которых ближе всего к количеству букв в языке — получаем нужное число строк и столбцов. Затем вписываем в таблицу все буквы алфавита подряд — по одной на каждую клетку. При нехватке клеток можно вписать в одну две буквы (редко употребляющиеся или схожие по употреблению).

Шаг 2: Принцип шифрования – существует несколько методов шифрования с помощью квадрата Полибия. Ниже приведены три из них.

Пример: Зашифруем слово «ИНФОРМАТИКА»:

Шаг 1: Формирование таблицы шифрования. Число букв в русском алфавите отличается от числа букв в греческом алфавите, поэтому размер таблицы выбран другой (квадрат 6*6=36, поскольку 36 наиболее близкое число к 33):


1

2

3

4

5

6

1

t1607446716ae.gift1607446716ae.gifА

Б

В

Г

Д

Е

2

Ё

t1607446716ae.gifЖ

З

И

Й

К

3

Л

М

t1607446716ae.gifН

О

П

Р

4

С

Т

У

t1607446716ae.gifФ

Х

Ц

5

Ц

Ш

Щ

Ъ

Ы

Ь

6

Э

Ю

Я




Шаг 2: Принцип шифрования

Для шифрования на квадрате находили букву текста и вставляли в шифровку нижнюю от неё в том же столбце. Если буква была в нижней строке, то брали верхнюю из того же столбца.

Таблица координат

Буква текста:

И

Н

Ф

О

Р

М

А

Т

И

К

А

Буква шифра:

О

У

Ъ

Ф

Ц

Т

Ё

Ш

О

Р

Е

3. Шифр Вижинера – метод полиалфавитного шифрования буквенного текста с использованием ключевого слова. Этот метод является простой формой многоалфавитной замены. Шифр Цезаря можно считать частным случаем шифра Виженера. Но при этом шифр Цезаря – шифр простой замены, а шифр Виженера – шифр сложной замены

Шифр Виженера состоит из последовательности нескольких шифров Цезаря с различными значениями сдвига. Для зашифровывания может использоваться таблица алфавитов, называемая квадрат (таблица) Виженера. Применительно к латинскому алфавиту таблица Виженера составляется из строк по 26 символов, причём каждая следующая строка сдвигается на несколько позиций. Таким образом, в таблице получается 26 различных шифров Цезаря. На каждом этапе шифрования используются различные алфавиты, выбираемые в зависимости от символа ключевого слова.

Пример: Зашифруйте сообщение шифром Виженера «Информатика»

Шаг1: Записываем слово таким образом, чтобы буквы были отдельно друг от друга

Исходное слово:

И

Н

Ф

О

Р

М

А

Т

И

К

А

Шаг 2: Придумайте ключевое слово, которое Вы будете использовать в качестве ключа (существительное). У нас ключевое слово КЛЮЧ. Мы записываем ключевое слово циклически до тех пор, пока длина не будет соответствовать длине исходного текста: КЛЮЧКЛЮЧКЛЮ



Исходное слово:

И

Н

Ф

О

Р

М

А

Т

И

К

А

Ключевое слово:

К

Л

Ю

Ч

К

Л

Ю

Ч

К

Л

Ю

Шаг 3: Далее, пользуясь таблицей, мы начинаем шифровать слово. Исходное слово – Буквы исходного текста (по таблице), Ключевое слово – Буквы ключа (по таблице). Первый символ исходного текста И зашифрован последовательностью К, которая является первым символом ключа. Тогда мы получаем символ У. В итоге у нас получается:

Исходное слово:

И

Н

Ф

О

Р

М

А

Т

И

К

А

Ключевое слово:

К

Л

Ю

Ч

К

Л

Ю

Ч

К

Л

Ю

Итоговое слово:

У

Щ

У

Ж

Ы

Щ

Я

К

У

Ц

Я

Расшифровывание производится следующим образом: находим в таблице Виженера строку, соответствующую первому символу ключевого слова; в данной строке находим первый символ зашифрованного текста. Столбец, в котором находится данный символ, соответствует первому символу исходного текста. Следующие символы зашифрованного текста расшифровываются подобным образом.

t1607446716af.png









2 Практическая часть

При оформлении кабинета информатики возникло желание изготовить стенд «Простейшие методы шифрования текстовой информации», который можно будет использовать на уроках и во внеурочной деятельности.

t1607446716ag.gif

t1607446716ah.gif

t1607446716ai.gif









Заключение

Появление в середине двадцатого столетия первых электронно-вычислительных машин кардинально изменило ситуацию в области шифрования (криптографии). С проникновением компьютеров в различные сферы жизни возникла принципиально новая отрасль - информационная индустрия.

Проблема обеспечения необходимого уровня защиты информации оказалась (и это предметно подтверждено как теоретическими исследованиями, так и опытом практического решения) весьма сложной, требующей для своего решения не просто осуществления некоторой совокупности научных, научно-технических и организационных мероприятий и применения специфических средств и методов, а создания целостной системы организационных мероприятий и применения специфических средств и методов по защите информации.

Объем циркулирующей в обществе информации стабильно возрастает. Популярность всемирной сети Интренет в последние годы способствует удваиванию информации каждый год. Фактически, на пороге нового тысячелетия человечество создало информационную цивилизацию, в которой от успешной работы средств обработки информации зависит благополучие и даже выживание человечества в его нынешнем качестве. Произошедшие за этот период изменения можно охарактеризовать следующим образом: объемы обрабатываемой информации возросли за полвека на несколько порядков; доступ к определенным данным позволяет контролировать значительные материальные и финансовые ценности; информация приобрела стоимость, которую даже можно подсчитать; характер обрабатываемых данных стал чрезвычайно многообразным и более не сводится к исключительно текстовым данным; информация полностью "обезличилась", т.е. особенности ее материального представления потеряли свое значение - сравните письмо прошлого века и современное послание по электронной почте; характер информационных взаимодействий чрезвычайно усложнился, и наряду с классической задачей защиты передаваемых текстовых сообщений от несанкционированного прочтения и искажения возникли новые задачи сферы защиты информации, ранее стоявшие и решавшиеся в рамках используемых "бумажных" технологий - например, подпись под электронным документом и вручение электронного документа "под расписку"; субъектами информационных процессов теперь являются не только люди, но и созданные ими автоматические системы, действующие по заложенной в них программе; вычислительные "способности" современных компьютеров подняли на совершенно новый уровень как возможности по реализации шифров, ранее немыслимых из-за своей высокой сложности, так и возможности аналитиков по их взлому.



















Список литературы


А.П. Алферов, А.Ю. Зубов, А.С. Кузьмин, А.В. Черемушкин Основы Криптографии. — М.: Гелиос, 2016, с.5 – 53.

Баричев С.Г., Гончаров В.В., Серов Р.Е. Основы современной криптографии. — М.: Горячая линия — Телеком, 2015, с. 4 – 8.

Жельников В., Криптография от папируса до компьютера. — М.: ABF, 2016. http://www.fidel-kastro.ru/crypto/zhelnik.htm

Алферов А.П., Зубов А.Ю., Кузьмин А.С., Черемушкин А.В. Основы криптографии. - М.: Гелиос АРВ, 2016

Гаврюшина С.Л., Ширшова Т.А. Рассказы о криптографии. - Омск: ОмГУ, 2015

Дориченко С.А., Ященко В.В. 25 этюдов о шифрах. - М.: Теис, 2017


2


в формате Microsoft Word (.doc / .docx)
Комментарии
Комментарии на этой странице отключены автором.