Практическая работа «Технология проверки, наладки и испытания электрических аппаратов»

14
0
Материал опубликован 16 August 2016 в группе

Технология проверки, наладки и испытания электрических аппаратов.

Проверка автоматических выключателей

При проверке и испытаниях автоматических выключателей выполняют следующее:

  • внешний осмотр;
  • измерение сопротивления изоляции и ее испытание повышенным напряжением промышленной частоты;
  • проверку работоспособности автоматических выключателей при номинальном, пониженном и повышенном напряжениях оперативного тока;
  • проверку действия максимальных, минимальных или независимых расцепителей автоматических выключателей с номинальным током 200 А и более.

При внешнем осмотре проверяют соответствие установленных автоматических выключателей проекту или параметрам сети; отсутствие внешних повреждений и наличие пломб на блоках полупроводниковых расцепителей; надежность контактных соединений; правильность регулировки контактной системы и четкость работы привода при ручном включении и отключении выключателя.
К внешнему осмотру можно приступать только после тщательного изучения инструкции по эксплуатации данных выключателей.
Сопротивление изоляции проверяют мегаомметром на 1000 В между зажимами полюсов и между зажимами каждого полюса и заземленной металлической конструкцией автомата в отключенном положении при снятом напряжении. Оно должно быть не менее 0,5 МОм.

При неудовлетворительной изоляции необходимо выяснить причины: снять дугогасительные камеры и проверить состояние полюсов, отсутствие загрязнений и подключения к полюсам внешней коммутации, возможность увлажнения плиты выключателя. После устранения причины пониженного сопротивления его изоляции измерение повторяют. При установке дугогасительных камер на полюса выключателя после их снятия обращают внимание на то, чтобы главные и дугогасительные контакты не касались внутренних частей дугогасительных камер. Сопротивление изоляции обмоток приводов максимальных, минимальных и независимых расцепителей проверяют мегаомметром на 1000 В между одним из зажимов обмотки и заземленным корпусом. Оно должно быть не менее 0,5 МОм (для новых выключателей серии «Электрон» — 20 МОм).

Работу тепловых, электромагнитных или комбинированных расцепителей выключателей серий АЗ 100, А3700 с электромагнитным расцепителем, АЕ20, АК50, АК63, АЕ25, АЕ26, АЕ1000, ВА51, ВА52 и АП50 проверяют в каждом полюсе выключателя. Проверку тепловых элементов при наладочных работах осуществляют нагрузочным током, равным трехкратному номинальному току расцепителя. Время срабатывания сравнивают с заводскими (или типовыми) характеристиками с учетом, что они даны для случая одновременной нагрузки испытательным током всех полюсов выключателя. Если фактическое время срабатывания превысит на 50 % данные завода- изготовителя, необходимо, прежде чем браковать выключатель, проверить начальный ток его срабатывания. При нагрузке одного полюса выключателя начальный ток срабатывания увеличивается на 25—30 % по сравнению с таким же током при нагрузке одновременно всех полюсов. Время срабатывания теплового расцепите- ля должно соответствовать заводской характеристике. При этом большинство выключателей имеет ограниченное время испытания под током (не более 120—150 с).
При проверке электромагнитных расцепителей без тепловых элементов подают на каждый полюс испытательный ток, значение которого устанавливают на 15—30 % ниже тока уставки. При этом выключатель не должен отключаться. Затем испытательный ток поднимают до тока срабатывания, значение которого не должно превышать значения тока уставки более чем на 15—30 %.
При проверке электромагнитных элементов комбинированных расцепителей нагрузочный ток от испытательного устройства подают на каждый полюс выключателя. Быстро увеличивая ток до значения на 15—30 % ниже тока уставки, убеждаются, что расцепитель не срабатывает. Затем быстро повышают ток до тока срабатывания, фиксируя его значение. Оно не должно отличаться от заводских данных. Проверяя электромагнитные элементы комбинированных расцепителей, следует помнить, что между подачами испытательного тока на полюс должен быть интервал, достаточный для остывания теплового элемента. Чтобы убедиться, что отключение произошло от электромагнитного элемента расцепителя, необходимо сразу же включить его после каждого отключения выключателя. Если выключатель включается нормально, отключение последовало от электромагнитного элемента. При срабатывании теплового элемента выключатель повторно не включится. Из всех ранее указанных серий выключателей только выключатели серии АП50 имеют на механизме свободного расцепления рычаг для регулировки уставки до 0,6 номинального значения тока, остальные комплекты расцепителей, отрегулированных на уставку на заводе-изготовителе.
Регулировка токов срабатывания максимальных расцепителей выключателей, укомплектованных полупроводниковыми элементами, осложняется тем, что при большом количестве элементов, из которых состоит полупроводниковый расцепитель, увеличивается число возможных отказов в работе. Поэтому, приступая к регулировке уставок токов и времени срабатывания таких расцепителей, следует убедиться в работоспособности полупроводникового блока БУРИ и отключающего электромагнита. Для этого изготовляют специальные устройства (приставки), с помощью которых выполняют данную проверку. Так, для проверки работоспособности полупроводникового расцепителя выключателя серии А3700 используют устройство, схема которого показана на рис. 1.
В подготовленном для регулировки выключателе сначала проверяют работоспособность независимого расцепителя, являющегося выходным элементом полупроводникового блока. При подаче напряжения с зажимов А1 — А2 на зажим разъема X полупроводникового блока должен сработать независимый расцепитель, а выключатель отключиться.

Рис. 26. Электрическая схема прибора контроля РП :



Рис. 2. Упрощенная схема проверки работы максимально-токовой защиты вторичным током. QF — автоматический выключатель, X.S0 гнездо, TAI — ТАЗ трансформаторы тока, FUI - плавкий предохранитель, РА! амперметр, НИ — прибор световой сигнализации, UD — выпрямитель.


Для выключателей серии «Электрон» разработана методика не только проверки работоспособности, но и настройки уставок тока и времени срабатывания полупроводниковых блоков РМТ-1 вторичным током. Выполняют это с помощью приставки для проверки максимально-токовой защиты вторичным током, принципиальная схема которой приведена на рис. 3. На этом рисунке показана и схема подключения приставки к выключателю серии «Электрон», а также источников питания схемы.


Рис. 3. Лицевая панель расцепителя РМТ-1 I — контрольные гнезда, 2—5 — шкалы.

Приставку включают в разъем между выключателем и блоком РМТ. При проверке калибровки номинальных токов на лицевой панели блока ручку /« (рис. 3) ставят на уставку 0,8, ручки S6In, Iпх и S — в среднее положение. Подключают индикатор (вольтметр постоянного тока с пределом 25—30 В) к гнездам на лицевой панели РМТ. Колодки переключателей S1 и S2 блока РМТ устанавливают соответственно в положения 6 и 11.
Включают выключатель «Электрон». Подают на схему питание и с помощью автотрансформатора плавно увеличивают ток в цепи РА1 (см. рис. 2), одновременно следя за стрелкой индикатора. С момента подачи напряжения питания показание индикатора должно быть 17—21 В. При некотором значении тока, равном вторичному току срабатывания на проверяемой уставке, показание индикатора скачкообразно уменьшиться до 0—3 В. Показания амперметра PAI в момент срабатывания блока не должны отличаться более чем на ± 10 % от значения вторичного тока для проверяемой уставки выключателя. Таким же образом проверяют работу блока РМТ на других уставках. Проверка работоспособности полупроводниковых блоков выключателей серии ВА53-41 аналогична проверке выключателя «Электрон»
Окончательную проверку срабатывания максимально-токовой защиты выключателей серий А3700, ВА53-41 и «Электрон» осуществляют первичным током от нагрузочного устройства. Для этого на лицевой панели полупроводниковых блоков устанавливают в расчетное положение соответствующие регуляторы. Подключают к одной из фаз главной цепи выключателя нагрузочное устройство, с помощью которого повышают ток в главной цепи до отключения выключателя. Значение тока и время срабатывания не должны отличаться от калибровочного значения для проверяемой вставки более чем на ±15 %. Далее по аналогии проверяют работу максимально-токовой зашиты, пропуская ток через остальные фазы или полюса выключателя. По окончании проверок закрывают полупроводниковые блоки защитными стеклами и пломбируют. Результаты проверок заносят в протокол.
Для прогрузки выключателей первичным током используют нагрузочные устройства УБКР-1, УБКР-2, НТ-10, РНУ6-12, ТОН-7 и др.
При проверке и регулировке вставок выключателей постоянного тока применяют нагрузочные трансформаторы как с однофазными, так и трехфазными выпрямителями или генераторы постоянного тока на ток до 10 кА при напряжении холостого хода 6—12 В.
Наладка выключателей заканчивается проверкой их работы по полной схеме (на подстанции может быть схема автоматического ввода резерва, иногда—схема управления электродвигателем), взаимодействия всех элементов схемы и правильности включения измерительных приборов. Проверку проводят при номинальном и 0,8 Uном напряжении оперативного тока. По постоянной схеме проверяют фазировку поданного напряжения (чередование фаз), показания вольтметров и амперметров (после подключения нагрузки).
Окончательное заключение о качестве наладочных работ и пригодности выключателей к эксплуатации делают после их включения в работу на полную нагрузку. Причем, если от выключателя питается один электродвигатель, достаточно произвести несколько его пусков (это особенно необходимо для приводов вентиляторов, пуск которых длительный). Если выключатель во время пуска не отключается, значит уставки защит выполнены правильно. Если от выключателя питается несколько токоприемников, следует создать наиболее неблагоприятный рабочий режим, например пуск наиболее мощного из двигателей при работающих остальных токоприемниках под нагрузкой.

Наладка контакторов и пускателей

В большинстве схем управления электроприводом для включения двигателей применяют контакторы, а также магнитные и бесконтактные (тиристорные) пускатели. С их помощью осуществляется дистанционное и автоматическое включение и отключение приводного двигателя, пусковых и регулировочных сопротивлений, отключение аварийных участков сети, включение тормозных электромагнитов и других вспомогательных устройств.
Контакторы и пускатели чаще всего комплектуются заводами- изготовителями вместе с аппаратурой управления и защиты в специальные блоки, панели, щиты и станции управления соответственно проектным схемам и поставляются потребителю проверенными и отрегулированными. Нередко на монтаж магнитные пускатели поступают россыпью, тогда проектную схему монтируют полностью на месте.
Контакторно-релейная аппаратура, поступающая на монтаж, в большинстве случаев нуждается в предварительной проверке и механической регулировке, так как при транспортировке могут ослабнуть крепления, а при длительном хранении может образоваться коррозия, вызывающая заедание подвижных систем и нарушающая проводимость контактных поверхностей.
При первоначальной наладке аппаратов на месте монтажа проверяют внешним осмотром: соответствие типа аппарата и параметров втягивающей катушки проекту или реальным нагрузкам, отсутствие консервирующей смазки и транспортных креплений, наличие всех деталей магнитной системы и возвращающих пружин; состояние гибких соединений, наличие и состояние искрогасительных камер, наличие немагнитной прокладки или короткозамкнутого витка и их состояние, наличие крепежных болтов, гаек, плоских и пружинных шайб и качество крепления; целостность опорных призм или подшипников; состояние главных и вспомогательных контактов и их пружин. Кроме того, вручную проверяют: отсутствие заедания подвижной системы; одновременность замыкания и размыкания главных контактов; наличие и размеры провалов главных и вспомогательных контактов; правильность действия вспомогательных контактов; плотность прилегания магнитопроводов. Правильность работы контактов и жесткость пружин оценивают при проверке и наладке сравнением с иными контакторами данного типа (в случае крайней необходимости — по каталожным данным). При замыкании и размыкании должно происходить скольжение одного контакта относительно другого (перекатывание).
Раствор А и провал В главных контактов замеряют шаблоном или нутромером в местах, показанных на рис. 4, а, б. Размеры растворов и провалов указаны в специальных таблицах завода-изготовителя.

Рис. 4. Проверка провала (а) и раствора (б) главных контактов.
Рис. 5. Схемы проверки напряжения втягивания и отпадания контакторов,

При несоответствии измеряемых и заводских данных выполняют дополнительную регулировку контактов.
Изоляцию контакторов, катушек, контакторно-релейной и другой аппаратуры проверяют при контроле изоляции цепей вторичной коммутации всей схемы управления и силовых цепей установки. Отдельно аппараты отключают только в том случае, если требуется отыскание участка с низкой изоляцией.
Далее проводят испытание работы аппарата подачей на его катушку оперативного тока. При этом проверяют у контакторов постоянного тока исправность катушки, правильность установки пружин, свободный ход подвижной части, правильность зазоров, а у контакторов переменного тока и поведение магнитной системы. Если вибрация магнитной системы значительная и якорь гудит, проверяют прилегание якоря при включении, наличие перекосов. При недостаточном прилегании или перекосах выполняют дополнительную механическую регулировку, а при необходимости — пришлифовку полюсов. Далее контролируют работу схемы, четкость включения и отключения аппаратов при номинальном и пониженном до 0,8 Uном напряжении. Если при пониженном напряжении четкость включения аппаратов снижается или они не срабатывают, проверяют и регулируют напряжение втягивания и отпадания контакторов или магнитных пускателей по схемам, показанным на рис. 5, а, б.
Чаще всего встречаются следующие неисправности пускателей и контакторов:
вибрация магнитопровода пускателей и контакторов переменного тока, вызванная отсутствием короткозамкнутого витка, загрязнением плоскостей прилегания электромагнитов или неплотным прилеганием поверхностей электромагнитов;
повышенный нагрев катушек пускателей или контакторов, что объясняется малым экономическим сопротивлением у контакторов постоянного тока и увеличенным зазором среднего стержня у контакторов и пускателей переменного тока;
подгорание, глубокая коррозия контактов, что объясняется неодновременностью их касания, недостаточным начальным нажатием контактов, их вибрацией при касании.

В последнее время широко применяют тиристорные пускатели серии ПТ и пусковые тиристорные устройства серии ПТУ.
Пусковые тиристорные устройства серии ПТУ (ПТУ-111 ч- ~ ПТУ-342, ПТУ-151 и ПТУ-152 на токи 63, 100, 160, 250 и 400 А) являются бесконтактными коммутационными аппаратами и в зависимости от модификации обеспечивают: включение, отключение трехфазных асинхронных двигателей, трехфазных активных и активно-индуктивных нагрузок (кроме, трансформаторов); включение и динамическое торможение при выключении асинхронных двигателей; включение, динамическое торможение при выключении и изменение направления вращения (реверс) асинхронных двигателей.
После монтажа пускателя проверяют визуально состояние контактных соединений шин, кабелей на входных и выходных зажимах, а также состояние крепления гибких выводов тиристоров. Ослабленные места подтягивают гаечным ключом. Проверяют также надежность крепления тиристоров в охладителях. Для надежной работы пускателя необходимо, чтобы основание тиристора плотно прилегало к охладителю. Тиристор можно ввертывать в гнездо охладителя только торцовыми ключами. Контролируют визуально состояние монтажа, пайки, целостности комплектующих изделий, пайки проводов на управляющих электродах тиристоров. При необходимости пайку производят припоем ПОССу40-0,5 или ПОССу61-С),5 с канифолью. Не допускается использовать для пайки кислотные флюсы. Пропаянные места покрывают грунтовкой ВЛ-0,2.
Проверяют надежность крепления термодатчика на охладителе. При этом основание термодатчика должно плотно прилегать к охладителю, а поверхности соприкосновения должны быть очищены от пыли и других предметов, нарушающих тепловой контакт.
Сопротивление изоляции проверяют в такой последовательности. Отключают проводники сети и нагрузки. Измеряют сопротивление изоляции мегаомметром на 500 В между входными зажимами <Л1, Л2, Л3>, У/3 (рис. 6) и шпильками крепления охладителей, между зажимами С1, С?, С3 и шпильками крепления охладителей; между входными зажимами Л\, Л2, Лз и зажимом 4 блока защиты. Сопротивление изоляции должно быть не менее 50 МОм.

Рис. 6. Схема реверсивных пускателей ПТ16-380Р. ПТ40-380Р:
V —диоды, KS — выпрямители, ВК — термодатчик, VT — транзисторы, R — резисторы, SB — кнопочные выключатели, К — контакты.
Затем проверяют термодатчик, для чего отпаивают на зажиме 3 блока защиты провод, идущий от термодатчика ВК включают омметр между отпаянным проводом и зажимом 2 блока защиты; измеряют сопротивление термодатчика (сопротивление исправного термодатчика при 20 °С должно быть 16,5 кОм ± 20 %; при температуре больше или меньше 20 °С оно будет соответственно меньше или больше указанного); отключают омметр и припаивают провод, идущий от термодатчика к зажиму 3 блока защиты.
Далее проверяют работу пускателя, для чего подают на его вход (зажимы Л1, Л2, Л3) напряжение сети, предварительно проверив целостность предохранителя FU. Устанавливают наличие напряжения на зажимах XI (1—3) у нереверсивных и XI (1—4) у реверсивных пускателей. Оно должно быть (30±2) В постоянного тока. Затем с помощью кнопок управления производят включение, отключение и реверс пускателя. При этом проверяют токораспределение по фазам в нагрузке. Если оно при включении пускателя «Вперед» и «Назад» равномерное, а работа электродвигателя нормальная, проверку действия пускателя можно закончить. Если токораспределение по фазам не одинаковое, проверяют с помощью осциллографа работу тиристоров в каждой фазе.
При проверке настройки тепловой зашиты пускателя имеют в виду, что сигналом перегрузки служит нагрев тиристоров током нагрузки. Время срабатывания тепловой защиты является функцией тока перегрузки и температуры окружающей среды, т. е. схема защищает от перегрузки тиристоры. Пускатели поставляют настроенными так, что тепловая защита срабатывает при температуре на корпусе тиристора не выше 105 °С. Работоспособность схемы защиты от перегрузки (схемы транзистора VT2) проверяют в такой последовательности: зашунтировать термодатчик ВК в точках 2 и 3 блока защиты резистором 1,5 кОм; зашунтировать термокомпенсатор (R7, R8) резистором 10 кОм; подать питание на вход пускателя; повернуть ось резистора R5 против часовой стрелки, включить пускатель и медленно вращать ось резистора R5 по часовой стрелке до отключения пускателя; снять со входа пускателя напряжение питания, затянуть контргайку резистора R5, снять резисторы, шунтирующие термодатчик и термокомпенсатор.
Максимально-токовая защита настроена на 9—10-кратный номинальный ток пускателя. При управлении с помощью пускателя двигателем с номинальным током, меньшим номинального тока пускателя, максимально-токовая защита должна быть отстроена от пускового тока данного двигателя. Для этого отсоединяют силовые концы трансформаторов тока, а напряжение подают на пускатель, минуя трансформаторы тока. Первичные обмотки трансформаторов тока соединяют последовательно. Подключают к трансформаторам тока (зажимы Л1—Л2) нагрузочное устройство. Включают пускатель. В цепи трансформаторов тока кратковременно повышают ток до 7,5—8-кратного /ном двигателя и резистором R6 выставляют порог срабатывания защиты. Так как вторичные обмотки трансформаторов тока соединены на разность токов, во вторичной цепи (резистор R13) будет проходить сумма вторичных токов TAI и ТА2. Снимают нагрузочный ток, снимают и подают напряжение питания (снимают «память» зашиты). Повышают ток в первичных обмотках трансформаторов тока до срабатывания защиты, фиксируют значение тока срабатывания и умножают его на 0,865, таким образом получают значение тока срабатывания защиты.
Снимают напряжение питания. Затягивают контргайку резистора R6, восстанавливают силовую схему пускателя. На этом проверка пускателя заканчивается.

Проверка и регулировка реле.

ПРОВЕРКА И РЕГУЛИРОВКА ЭЛЕКТРОМАГНИТНЫХ РЕЛЕ ТОКА И НАПРЯЖЕНИЯ

Если аппаратура по паспортным данным соответствует предъявляемым ей требованиям, приступают к ее проверке, регулировке и калибровке. Некоторые реле, регулировка и калибровка которых требуют большого объема работ и точности (токовые реле РТ-40, РТ-80), приходится снимать с панелей и шкафов, а некоторые (промежуточные, сигнальные, времени) можно настроить на месте установки. Однако все реле должны пройти предварительный осмотр, во время которого проверяют:
плотность прилегания стекла к кожуху и кожуха к цоколю, качество уплотнений;
состояние ламелей, шпилек или штырей и винтов для подсоединения проводов;
надежность внутренних соединений проводников и паек.
Кроме того, при осмотре снимают прокладки, заклинивающие подвижную систему, а подвязанные подвижные части освобождают; удаляют пыль, металлические стружки и опилки кисточкой или чистой салфеткой; проверяют вручную легкость хода, отсутствие затираний и перекосов, свободное вращение подвижной системы реле, при этом реле должно находиться в нормальном вертикальном положении.
Внимательно осматривают моментные пружины: устраняют их перекосы и сцепление отдельных витков. Пружина должна возвращать подвижную систему в исходное положение даже после ее незначительного смещения. Часовой механизм реле времени должен доводить его до срабатывания (замыкания или размыкания контактов) на всех уставках.
Выходными элементами всех реле являются контакты, поэтому они должны быть тщательно отрегулированы. Контакты очищают от загрязнений деревянной палочкой, при их подгорании нагар удаляют острым лезвием или надфилем с мелкой насечкой и протирают чистой салфеткой.
Не следует касаться контактов пальцами. Не допускается их чистка наждачной бумагой или другими абразивными материалами.
Для устранения вибрации контактов в замкнутом положении необходимо отрегулировать их так, чтобы иметь некоторый провал на контактном мостике. Раствор, провал и нажатие контактов являются основными параметрами контактного устройства и не должны выходить за пределы допустимых.
Далее проверяют мегаомметром на 1000 В сопротивление изоляции токоведущих частей на корпус и между любыми электрически не связанными токоведущими частями. Оно должно быть не менее 10 МОм.

Рис. 7.Схемы проверки параметров срабатывания и возврата реле постоянного и переменного токов:

а—напряжения и малых токов, б - токов, в — больших переменных токов для настройки реле. RR — реостат, RP — потенциометр. TV, TL - регулировочный и нагрузочный трансформаторы.
Следующий этап — регулировка электрических характеристик. Проверку электрических характеристик реле, имеющих стальной кожух, осуществляют при надетом кожухе. Реле, выполненные с кожухами из немагнитного материала, можно проверять без кожухов.
Подводимые ток и напряжение должны иметь практически синусоидную форму, для чего токорегулирующие устройства собирают по схемам, приведенным на рис. 7, а, б. Однако при необходимости регулирования больших значений переменного тока применяют трансформаторы и автотрансформаторы (рис. 7, в). Ток или напряжение следует изменять плавно в ту или иную сторону до получения значения срабатывания или возврата.

Не рекомендуется «искать» точку срабатывания увеличением или уменьшением тока или напряжения во избежание ошибки из-за перемагничивания сердечника реле. По результатам замеров параметров срабатывания и возврата определяют коэффициент возврата (отношение параметров возврата срабатывания). Для максимальных реле это отношение меньше единицы, для минимальных — больше единицы. Шкалу реле проверяют минимум в трех точках: в начале и конце шкалы и на рабочей уставке. За результат принимают среднее арифметическое из трех измерений для каждой точки.
У большинства электромагнитных реле тока и напряжения параметры срабатывания и возврата регулируют натяжением пружины или изменением воздушного зазора между якорем и сердечником. Параметры возврата у реле постоянного тока регулируют подбором немагнитных прокладок и натяжением пружины, у реле переменного тока — только натяжением пружины. После регулировки реле проверяют на отсутствие вибрации, а также на надежность срабатывания 10-кратным током уставки (максимальные токовые реле переменного тока) и максимально возможным напряжением в данной схеме (реле напряжения) при 80 и 110% Uном (промежуточные реле).
Установленную выдержку времени определяют с помощью электросекундомера РТ по схемам, показанным на рис. 56, а — г. Выдержку времени электромагнитных реле постоянного тока (РЭВ-800, РЭМ-200, РП-250) регулируют изменением толщины немагнитной прокладки или количества демпфирующих шайб (грубая регулировка) и изменением натяжения пружины (тонкая регулировка). Чем тоньше немагнитная прокладка, тем больше выдержка времени. Следует помнить, что при смене немагнитных прокладок меняется провал контактов. Самые тонкие стандартные прокладки имеют толщину 0,1 мм, так как более тонкие прокладки могут деформироваться от ударов якоря, в результате чего со временем возможно «залипание» реле, поскольку якорь останется в притянутом состоянии от остаточного намагничивания. «Залипание» может произойти и в случае чрезмерного ослабления пружины, отталкивающей якорь от сердечника.

ПРОВЕРКА И РЕГУЛИРОВКА ЭЛЕКТРОТЕПЛОВЫХ ТОКОВЫХ РЕЛЕ

После проверки соответствия паспортных данных тепловых реле номинальным токам защищаемых объектов внешним осмотром проверяют:
надежность затяжки контактов присоединения тепловых элементов;
исправное состояние (отсутствие обрыва) нагревательных элементов, состояние биметаллических пластин;
четкость работы механизма контактной системы и самих контактов (отсутствие заеданий, задержек, наличие провала контактов)
Затем приступают к проверке регулировки каждого теплового реле. Проверяют пригодность теплового реле подачей тока на каждый нагревательный элемент в отдельности, так как выходом всех нагревательных элементов является одна и та же контактная пара Перед подачей тока на тепловые элементы регулировочный рычаг реле ставят на уставку, необходимую для защищаемого объекта. Затем подают трехкратный ток уставки и отсчитывают время срабатывания (обычно 1—2 мин.) для серии ТРИ из холодного состояния). Если какое-то из реле сработает с большим временем, выясняют причину этого и проверяют снова, предварительно дав не менее 2 мин для остывания нагревательного элемента.
Сравнивая время срабатывания нагревательных элементов одного или нескольких однотипных реле, делают заключение о пригодности проверяемого реле для защиты конкретного токоприемника.

 
Комментарии
Комментариев пока нет.