Автор публикации: М. Абрамова, ученица 7 класса
Исследовательская работа по теме «История развития понятия функции» Абрамова Мария, учащаяся 7 класса. Руководитель: Родина Т. С. Учитель математики 2018 г.
Вопросы, направляющие исследование: Что такое функция? Как развивалось понятие функции? Как давно люди начали заниматься понятием функции? Есть ли дальнейшая перспектива изучения понятия функции?
Содержание Содержание История развития понятия функции 1.Пропедевтический период (с древнейших времен до XVII века). 2.Введение понятия функции через механическое, геометрическое представления (XVII век.) 3.Аналитическое определение функции (XVII - нач.XIXв.) 4.Идея соответствия (XIXв.) 5.Дальнейшее развитие понятия функции (XXв - ...).
Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.
Пропедевтический период (с древнейших времен до 17 века).
Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами.
Вавилонские ученые (4-5тыс.лет назад) пусть несознательно, установили, что площадь круга является функцией от его радиуса посредством нахождения грубо приближенной формулы: S=3r2. Примерами табличного задания функции могут служить астрономические таблицы вавилонян, древних греков и индийцев, а примерами словесного задания функции - теорема о постоянстве отношения площадей круга и квадрата на его диаметре или античные определения конических сечений, причем сами эти кривые выступали в качестве геометрических образов соответствующей зависимости.
Введение понятия функции через механическое и геометрическое представления (17 век.)
Путь к появлению понятия функции заложили в 17 веке французские ученые Франсуа Виет и Рене Декарт; они разработали единую буквенную математическую символику, которая вскоре получила всеобщее признание. Введено было единое обозначение: неизвестных - последними буквами латинского алфавита - x, y, z, известных - начальными буквами того же алфавита - a, b, c, ... и т.д.
Кроме того, у Декарта и Ферма (1601-1665) в геометрических работах появляется отчетливое представление переменной величины и прямоугольной системы координат.
Постепенно понятие функции стало отождествляться, таким образом, с понятием аналитического выражения - формулы. В 1671 году Ньютон под функцией стал понимать переменную величину, которая изменяется с течением времени (называл в “флюентой”). В “Геометрии” Декарта и работах Ферма, Ньютона и Лейбница понятие функции носило по существу интуитивный характер и было связано либо с геометрическими, либо с механическими представлениями: ординаты точек кривых - функция от абсцисс (x); путь и скорость - функция от времени (t) и т.п.
Аналитическое определение функции (17 - начало 19 века).
В 18 веке появляется новый взгляд на функцию как на формулу, связывающую одну переменную с другой. Это так называемая аналитическая точка зрения на понятие функции. Подход к такому определению впервые сделал швейцарский математик Иоганн Бернулли (1667-1748), который в 1718 году определил функцию следующим образом: “функцией переменной величины называют количество, образованное каким угодно способ из этой переменной величины и постоянных”.
Окончательную формулировку определения функции с аналитической точки зрения сделал в 1748 году ученик Бернулли Эйлер (во “Введении в анализ бесконечного”): “Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого количества и чисел или постоянных количеств”. Так понимали функцию на протяжении почти всего 18 века Даламбер (1717-1783), Лагранж (1736-1813), Фурье (1768-1830) и другие видные математики.
Идея соответствия (19 век).
В 1834 году в работе “Об исчезании тригонометрических строк” Н.И.Лобачевский, развивая вышеупомянутое эйлеровское определение функции в 1755г., писал: «Общее понятие требует, чтобы функцией от x называть число, которое дается для каждого x и вместе с x постепенно изменяется. Значение функции может быть дано и аналитическим выражением, или условием, которое подает средство испытывать все числа и выбирать одно из них; или, наконец, зависимость может существовать, или оставаться неизвестной...»
Еще до Лобачевского аналогичная точка зрения на понятие функции была высказана чешским математиком Б. Больцано. Таким образом, современное определение функции, свободное от упоминании об аналитическом задании, обычно приписываемое Дирихле, неоднократно предлагалось и до него.
Во второй половине 19 века после создания теории множеств в понятие функции, помимо идеи соответствия была включена и идея множества.
Дальнейшее развитие математической науки в 19 веке основывалось на общем определении функции Дирихле, ставшим классическим.
Дальнейшее развитие понятия функции (20 век - ...).
Уже с самого начала 20 века определение Дирихле стало вызывать некоторые сомнения среди части математиков.
В общем виде понятие обобщенной функции было введено французом Лораном Шварцем. В 1936 году, 28-летний советский математик и механик С.Л. Соболев первым рассмотрел частный случай обобщенной функции, включающей и дельта-функцию, и применил созданную теорию к решению ряда задач математической физики. Важный вклад в развитие теории обобщенной функции внести ученики и последователи Шварца - И.М. Гельфант, Г.Е. Шилов и др.
На сегодняшний день изучение и развитие понятия функции продолжается. Возможно, что в скором будущем мы получим новую формулировку данного понятия.