Методические рекомендации на тему «Алгоритм решения квадратных неравенств» (8–9 классы)

1
0
Материал опубликован 4 December 2018

Алгоритм решения квадратных неравенств.

1) Привести квадратное неравенство к стандартному виду:     

/data/files/e1543872126.png (541x66)          

2) Приравнять квадратный трехчлен к нулю и решить получившееся квадратное уравнение. 

3) Определить строгое или нет неравенство, полученное после шага 1.

Если строгое (знаки <, >), то смотреть таблицу 2.

Если не строгое (знаки , ), то смотреть таблицу 1.

4) Если знак >, то смотреть рисунки (1-6) под строкой 1 в выбранной ранее таблице.

Если знак <, то смотреть рисунки (7-12) под строкой 2 в выбранной ранее таблице.

5) Сравнить коэффициент a с нулем. Если больше, то обращаем внимание только на те рисунки, где ветви у параболы направлены вверх (1-3, 7-9). Если меньше, то те рисунки, где ветви у параболы направлены вниз (4-6, 10-12).

6) В зависимости от дискриминанта, полученного на шаге 2, выбрать один из трех рисунков. Ответом является числовой промежуток, записанный ниже рисунка.

Пример использования алгоритма с таблицей-схемой.

Пример 2. Решите неравенство.

/data/files/o1543872200.png (242x222) 

Исходное неравенство строгое, следовательно, воспользуемся таблицей 2. Так как знак меньше, смотрим вторую строку. Коэффициент a=3, следовательно, смотрим серию рисунков с параболой, у которой ветви направлены вверх (7-9). Так как дискриминант трехчлена равен 64 > 0, то схематично решение представлено на рисунке 9.

 

 

 Пример 3. Решите неравенство.

/data/files/d1543872310.png (313x122) 

Исходное неравенство является нестрогим, следовательно, используем таблицу 1. Так как знак больше или равно, то смотрим строку 1 и серию рисунков 1-6. Так как коэффициент a=-1, смотрим рисунки, где ветви параболы направлены вниз, это серия рисунков 4-6. Среди них выбираем рисунок 4, так как дискриминант меньше нуля. Следовательно, ответ - нет решений.

Таблица 1

 

 

Таблица 2

 

 

 

в формате Microsoft Word (.doc / .docx)
Комментарии
Комментариев пока нет.