12+  Свидетельство СМИ ЭЛ № ФС 77 - 70917
Лицензия на образовательную деятельность №0001058
 Пользовательское соглашение      Контактная и правовая информация
 
Педагогическое сообщество
УРОК.РФ
УРОК
Материал опубликовала
Ирина Игоревна Буркова267
Координатор проекта «Сборник методических разработок и педагогических идей»

Пояснительная записка

Рабочая программа по алгебре разработана на основании Закона РФ «Об образовании» (1992), в соответствии с требованиями Федерального компонента государственного стандарта общего образования и требования к оснащению образовательного процесса (2004г., № 1089), примерной программы по математике общего образования, авторской программы А.Г. Мордковича (2007), учебного плана и локальных актов МБОУ «Хоринская СОШ №1 им. Д.Ж.Жанаева».

Рабочая программа составлена для учащихся 7 «в» класса МБОУ «Хоринская СОШ №1 имени Д.Ж.Жанаева», рассчитана на 102 часа в год, 3 часа в неделю.

В основу изучения курса положены принципы:

дидактические (научности, сознательности и активности, наглядности, систематичности и последовательности, прочности, доступности, связи обучения с жизнью);

воспитания (социальной активности, социального творчества, развивающее воспитание, мотивированность, проблемность, индивидуализация, опора на ведущую деятельность);

развития (деятельности, непрерывности, целостного представления о мире, минимакса, психологической комфортности, вариативности, творчества);

педагогики здоровья: ненанесения вреда; субъект-субъектного взаимоотношения с учащимися; соответствия содержания и организации обучения возрастным особенностям учащихся; гармоничного сочетания обучающих, воспитывающих и развивающих педагогических воздействий; приоритет активных методов обучения; принцип отсроченного результата

Изучение алгебры в 7 классе направлено на достижение цели:

овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;

формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

Задачи:

Обучения: овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования; интеллектуальное развитие; получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов, для формирования у учащихся представлений о роли математики в развитии цивилизации и культурыформирование

Развития: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей; математической речи; сенсорной сферы; двигательной моторики; внимания; памяти; навыков само и взаимопроверки.

Воспитания: культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса; волевых качеств; коммуникабельности; ответственности.

Валеологические: сохранение и укрепление здоровья детей; наблюдение за посадкой детей; активное внедрение здоровьесберегающих технологий.

Общая характеристика учебного предмета:

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей ре­альности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. В ходе освоения содержания курса учащиеся получают возможность:

сформировать практические навыки выполнения уст­ных, письменных, инструментальных вычислений, развить вычис­лительную культуру;

овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

развить логическое мышление и речь — умения логически обосно­вывать суждения, проводить несложные систематизации, приво­дить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллю­страции, интерпретации, аргументации и доказательства;

сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реаль­ных процессов и явлений.

В ходе преподавания алгебры в 7 классах, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Возрастные и психологические особенности учащихся, характеристика класса:

Средний школьный возраст – переход от детства к юности. У школьника подростка этот переход связан с включением его в доступные ему формы общественной жизни. Вместе с тем меняется и реальное место, которое ребенок занимает в повседневной жизни окружающих его взрослых, в жизни своей семьи. Теперь его физический силы, его знания и умения ставят его в некоторых случаях на равную ступень с взрослыми, а кое в чём он даже чувствует своё преимущество. Продолжается развитие нервной системы, мыслительной деятельности. Мировоззрение, нравственные идеалы, система оценочных суждений, моральные принципы, которыми школьник руководствуется в своем поведении, еще не приобрели устойчивость, их легко разрушают мнения товарищей, противоречия жизни. Правильно организованному воспитанию принадлежит решающая роль. В зависимости от того, какой нравственный опыт приобретает подросток, будет складываться его личность.

В классе обучается 21 ученик: 10 мальчиков и 11 девочек. По итогам обследования учащихся выявлено, что 4 учащихся имеют низкий уровень обученности, остальные- средний уровень.

Исходя из этого, созданы условия для сохранения и развития здоровья всем учащимся, составлены индивидуальные (траектории) программы работы с детьми с низким уровнем готовности к обучению в школе и пониженной мотивацией, а также подобраны педагогические технологии и методы, описанные ниже.

В программе используются педагогические технологии: технологии на основе активизации и интенсификации деятельности учащихся (игровые технологии); технологии на основе активизации и интенсификации деятельности учащихся (системы развивающего обучения с направленностью на развитие творческих качеств личности); технологии на основе эффективности управления и организации учебного процесса (технология уровневой дифференциации обучения на основе обязательных результатов).

Методы :

методы организации и осуществления учебно-познавательной деятельности: словесный (диалог, рассказ и др.); наглядный (опорные схемы, слайды и др.); практический (упражнения, практические работы, решение задач,моделирование и др.); исследовательский; самостоятельной работы; работы под руководством преподавателя; дидактическая игра;

методы стимулирования и мотивации: интереса к учению; долга и ответственности в учении;

методы контроля и самоконтроля в обучении: фронтальная устная проверка, индивидуальный устный опрос, письменный контроль (контрольные и практические работы, тестирование, письменный зачет, тесты).

Формы текущего и итогового контроля: самостоятельная работа, тестирование, теоретические диктанты, контрольные работы.

 

Учебно-тематический план

Раздел

Количество часов

Сроки

Количество к/работ

1

Математический язык. Математическая модель.

13

2.09-30.09

1

2

Линейная функция

15

3.10-14.11

1

3

Система двух линейных уравнений с двумя переменными

13

16.10-14.12

1

4

Степень с натуральным показателем

7

16.12-11.01

1

5

Одночлены. Операции над одночленами

8

13.01-30.01

1

6

Многочлены. Арифметические операции над многочленами

15

1.02-5.03

1

7

Разложение многочленов на множители

18

7.03-23.04

1

8

Функция у = х2

9

25.04-18.05

1

9

Итоговое повторение

4

21.05-28.05

1

СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

Математический язык. Математическая модель (13 часов)

Числовые и алгебраические выражения. Переменная. Допустимое значение переменной. Недопустимое значение переменной. Первые представления о математическом языке и о математической модели. Линейные уравнения с одной переменной. Линейные уравнения как математические модели реальных ситуаций. Координатная прямая, виды промежутков на ней.

Основная цель изучения данной темы – выработать у учащихся умение выполнять действия над степенями с натуральным показателем.

Линейная функция (15 часов)

Координатная плоскость. Алгоритм отыскания координат точки. Алгоритм построения точки М(а;b) в прямоугольной системе координат.

Линейное уравнение с двумя переменными. Решение уравнение. График уравнения. Алгоритм построения графика уравнения.

Линейная функция. Независимая переменная (аргумент). Зависимая переменная. График линейной функции. Наибольшее и наименьшее значения линейной функции на заданном промежутке. Возрастание и убывание линейной функции. Взаимное расположение графиков линейных функций.

Системы двух линейных уравнений с двумя переменными (13 часов)

Система уравнений. Решение системы уравнений. Графический способ решения уравнений. Метод подстановки. Метод алгебраического сложения.

Системы двух линейных уравнений с двумя переменными как математические модели реальных ситуаций (текстовые задачи)

Степень с натуральным показателем (7 часов)

Степень. Основание степени. Показатель степени. Свойства степени с натуральным показателем. Умножение и деление степеней с одинаковыми показателями. Степень с нулевым показателем.

5 . Одночлены. Операции над одночленами (8 часов)

Понятие одночлена. Коэффициент одночлена. Стандартный вид одночлена. Подобные одночлены. Арифметические операции над одночленами.

Многочлены. Арифметические операции над многочленами (15 часов)

Многочлен. Члены многочлена. Двучлен. Трехчлен. Приведение подобных слагаемых членов многочлена. Стандартный вид многочлена.

Формулы сокращенного умножения. Деление многочлена на одночлен.

Разложение многочленов на множители (18 часов)

Разложение многочлена на множители: с помощью формул сокращенного умножения, способ группировки, вынесение общего множителя за скобки, комбинированный способ. Метод выделения полного квадрата.

Основная цель изучения данной темы - выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочлена на множители.

Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений.

Понятие алгебраической дроби. Сокращение алгебраической дроби.

Тождество. Тождественно равные выражения. Тождественные преобразования.

Квадратичная функция (9 часов)

Квадратичная функция, ее свойства и график. Графическое решение уравнений. Кусочная функция. Чтение графика функции. Область определения функции. Первое представление о непрерывных функциях. Точка разрыва. Функциональная символика.

Итоговое повторение (4 часов).

Учебно-методическое обеспечение

Список литературы для учителя

Основная литература:

Мордкович А.Г. «Алгебра-7» часть 1 , учебник – М.: Мнемозина, 2009

Мордкович А.Г. «Алгебра-7» часть 2, задачник – М.: Мнемозина, 2009

Александрова Л.А. «Контрольные работы. Алгебра -7» - М.: Мнемозина, 2009

Александрова Л.А. «Самостоятельные работы. Алгебра -7» - М.: Мнемозина, 2009

Дополнительная литература:

1. «Нестандартные задания по математике 5 – 11 классы», В.В. Кривоногов.

2. «Математика, итоговые уроки 5-9 классы», О.В. Бощенко.

3. «Математические олимпиады в школе 5-11 классы», А.В. Фарков.

4. Тесты по математике 5-11 классы, М.А. Максимовская и др.

5. «Учитесь мыслить нестандартно», Б.М. Абдрашитов и др.

6. «Интеллектуальные турниры, марафоны, бои», библиотека «Первого сентября», 2003 г.

7. «Тесты для промежуточной аттестации 7-8 классы», Ф.Ф. Лысенко, 2007 г.

8. «Я иду на урок математики, 7 класс, алгебра», библиотека «Первого сентября», 2001 г.

Интернет ресурсы:

http://uchitmatematika. ucos. ru/

http:// mikhatoval. edum. ru/

http://yroki. net

http:// rusedi.ru /

Список литературы для ученика

Мордкович А.Г. «Алгебра-7» часть 1 , учебник – М.: Мнемозина, 2009

Мордкович А.Г. «Алгебра-7» часть 2, задачник – М.: Мнемозина, 2009

Звавич «Дидактичеаские материалы по алгебре, 7 класс»

Контрольно- измерительные материалы

Перечень обязательных контрольных работ:

Контрольная работа №1: «Выражения, преобразования выражений, тождества»

Контрольная работа №2: «Линейные уравнения с одной переменной».

Контрольная работа №3: «Линейная функция»

Контрольная работа №4: «Степень с натуральным показателем».

Контрольная работа №5: «Многочлен».

Контрольная работа №6: «Умножение многочленов. Способ группировки».

Контрольная работа №7: «Разложение многочлена на множители».

Контрольная работа №8: «Системы линейных уравнений с двумя переменными».

Итоговая контрольная работа.

Контрольная работа № 1

Вариант 1

1о. Найдите значение алгебраического выражения 4(4с – 3) + 8(5 – 2с) – (10с + 8) при с = 0,12

2о. Решите уравнение: а) 2х + 3 = 0; б) 6х – 7 = 15 + 2х

3о. Запишите обозначение, аналитическую и геометрическую модели числового промежутка: «Луч с началом в точке (-5). Сколько отрицательных чисел принадлежит данному промежутку?

4о. Постройте прямую, проходящую через данные точки, и запишите ее аналитическую модель: А(-3; 1); В(-3; 4)

5. Решите задачу:

В книге 190 страниц. В пятницу Знайка прочитал в 1,2 раза меньше страниц, чем в субботу, а в субботу на 20 страниц меньше, чем в воскресенье. Сколько страниц он прочитал в субботу?

Контрольная работа № 1

Вариант 2

 

1. Найдите значение алгебраического выражения 2(12с – 7) + 6(5 – 4с) – 3(2с + 5) при с =

2о. Решите уравнение: а) 3х - 2 = 0; б) 7х + 1,5 = 10х - 3

3о. Запишите обозначение, аналитическую и геометрическую модели числового промежутка: «Открытый луч с концом в точке 7. Сколько натуральных чисел принадлежит данному промежутку?

4о. Постройте прямую, проходящую через данные точки, и запишите ее аналитическую модель: А(-2; 3); В(1; 3)

5. Решите задачу:

Капитан Врунгель загрузил на свой корабль в трех ящиках 44 кг бананов. В первом ящике было в 1,5 раза больше бананов, чем во втором, и на 4 кг меньше, чем в третьем. Сколько килограммов бананов в первом ящике?

Контрольная работа № 2

Вариант 1

а) Найдите координаты точек пересечения графика линейного уравнения

– 3х + 2у – 6 = 0 с координатными осями и постройте его график.

б) Принадлежит ли графику данного уравнения точка К?

а) Преобразуйте линейное уравнение с двумя переменными 2х + у – 1 = 0 к виду линейной функции и постройте ее график.

б) Найдите наименьшее и наибольшее значение этой функции на отрезке [-1;2].

Найдите координаты точки пересечения прямых у = 3 – х и у = 2х.

а) Задайте прямую пропорциональность формулой, если известно, что ее график параллелен графику линейной функции у = 3х – 4.

б) Определите, возрастает или убывает заданная функция. Ответ объясните.

При каком значении р решением уравнения 5х + ру – 3р = 0 является пара чисел (1;1) ?

Контрольная работа № 2

Вариант 2

а) Найдите координаты точек пересечения графика линейного уравнения

2х - 5у – 10 = 0 с координатными осями и постройте его график.

б) Принадлежит ли графику данного уравнения точка М?

а) Преобразуйте линейное уравнение с двумя переменными -2х + у + 3 = 0 к виду линейной функции и постройте ее график.

б) Найдите наименьшее и наибольшее значение этой функции на отрезке [-2;1].

Найдите координаты точки пересечения прямых у = – х и у = 2х - 3.

а) Задайте прямую пропорциональность формулой, если известно, что ее график параллелен графику линейной функции у = -4х + 7.

б) Определите, возрастает или убывает заданная функция. Ответ объясните.

При каком значении р решением уравнения -рх + 2у + р = 0 является пара чисел (-1;2) ?

Контрольная работа № 3

Вариант 1

1о. Решите методом подстановки систему уравнений 3х – у = -5,

-5х + 2у = 1.

2о. Решите методом алгебраического сложения систему уравнений 9х + 4у = 8,

5х + 2у = 3.

3о. Решите графически систему уравнений х + у = 5,

у = 2х + 2.

4.В туристический поход ребята взяли двухместные и трехместные палатки. Сколько человек разместилось в трехместных палатках, если на 26 человек взяли 10 палаток?.

5. Дана система уравнений ах + by = 36,

ax - by = 8.

Пара чисел (2;-1) является ее решением. Найти значения a и b.

 

Контрольная работа № 3

Вариант 2

 

1о. Решите методом подстановки систему уравнений 4х – 9у = 3,

х + 3у = 6.

2о. Решите методом алгебраического сложения систему уравнений 6х - 7у = -2,

2 х – 5у = 2.

3о. Решите графически систему уравнений у = 2х - 1,

х + у = -4.

4.В копилку складывали двухрублевые и пятирублевые монеты. Когда копилку вскрыли, в ней оказалось пятирублевых монет на 12 меньше, чем двухрудлевых, а всего денег на сумму 178 руб. Сколько рублей пятирублевыми монетами было в копилке?

5. Дана система уравнений ах – by = -24,

ax + by = 4.

Пара чисел (1;-2) является ее решением. Найти значения a и b.

Контрольная работа № 4

Вариант 1

1о. Упростить выражение: а) б) в)

Вычислите:

Сравните значения выражений и 1,6о

Объем куба равен 27 см3. Найти длину ребра куба и площадь полной поверхности куба.

Решите уравнение 10х = 10000000

 

Контрольная работа № 4

Вариант 2

1о. Упростить выражение: а) б) в)

Вычислите:

Сравните значения выражений и (-2)о

Площадь поверхности куба равен 24 см2. Найти длину ребра куба и объем куба.

Решите уравнение 2х = 512

Контрольная работа № 5

Вариант 1

Приведите одночлен к стандартному виду и напишите, чему равен его коэффициент k:

Упростить выражение:

а) 5х2у – 8х2у + х2у б) в) г)

Незнайка, отправляясь на Луну на воздушном шаре, взял для балласта несколько мешков с песком. Когда воздушный шар первый раз пошел на снижение, незнайка выбросил всех мешков, во второй раз он выбросил еще 60% от оставшихся мешков, а в третий раз – последние 4 мешка. Сколько всего мешков с песком брал с собой Незнайка?

Найдите значение выражения

-2ху4х2 + 3х3у22у2 – х2у(-ху3) при х = ; у = 2

Решите уравнение

Контрольная работа № 5

Вариант 2

Приведите одночлен к стандартному виду и напишите, чему равен его коэффициент k:

Упростить выражение:

а) ху2 – 13ху2 + 5ху2 б) в) г)

Малыш подарил Карлсону банку клубничного варенья. Карлсон в первый день съел 25% всего варенья, во второй он съел от оставшегося варенья, а в третий – доел последние 270г. Сколько всего граммов варенья было в банке?

Найдите значение выражения

2a2b3(-1,5a3b) + 5a4b4a + a2(-b)4a3 при b = ; a = -3

Решите уравнение

 

Контрольная работа № 6

Вариант 1

Найти многочлен р(х) и записать его в стандартном виде, если:

р(х) = р1(х) + р2(х) – р3(х) и р1(х) = -2х2 + 3х; р2(х) = 4х2 – 3; р3(х) = 2х – 4.

Выполните действия:

а) 4ху(2х + 0,5у – ху); б) (х – 3)(х + 2); в) (24х2у + 18х3) : (-6х2)

Упростите выражение, используя ФСУ: (2р – 3)(2р + 3) – (р – 2)2.

Найти три последовательных натуральных числа, если известно, что квадрат большего из них на 34 больше произведения двух других.

Докажите, что значение выражения не зависит от значения переменной: 5х3 – 5(х + 2)(х2 – 2х + 4)

Контрольная работа № 6

Вариант 2

Найти многочлен р(х) и записать его в стандартном виде, если:

р(х) = р1(х) + р2(х) – р3(х) и р1(х) = 2х2 - 5х; р2(х) = 3х2 + 1; р3(х) = х – 2.

Выполните действия:

а) -5ху(3х2 - 0,2у2 + ху); б) (х – 5)(х + 4); в) (35х3у - 28х4) : 7х3

Упростите выражение, используя ФСУ: (р + 3)2 - (3р - 1)(3р + 1).

Найти три последовательных натуральных числа, если известно, что квадрат меньшего из них на 47 меньше произведения двух других.

Докажите, что значение выражения не зависит от значения переменной: 2х3 – 2(х - 3)(х2 + 3х + 9)

Контрольная работа № 7

Вариант 1

Разложить на множители:

а) 3х2 – 12х б) 2а + 4b – ab – 2b2 в) 4х2 – 9 г) х3 – 8х2 + 16х

Сократите дробь:

а) б)

Решите уравнение (х – 4)2 – 25 = 0

Вычислите рациональным способом

Докажите тождество: a3 + 3a2b + 3ab2 + b3 = (a + b)3

Контрольная работа № 7

Вариант 2

Разложить на множители:

а) 4х2 + 8х б) 3а - 6b + ab – 2b2 в) 9х2 – 16 г) х3 + 18х2 + 81х

Сократите дробь:

а) б)

Решите уравнение (х + 2)2 – 49 = 0

Вычислите рациональным способом

Докажите тождество: a3 - 3a2b + 3ab2 - b3 = (a - b)3

Контрольная работа № 8

Вариант 1

1о. Постройте график функции у = х2. С помощью графика найдите

а) значение функции при значении аргумента, равном -2; 1; 3;

б) значение аргумента, если значение функции равно 4;

в) наибольшее и наименьшее значения функции на отрезке [-1;2];

2о. Решите графически уравнение х2 = 2х + 3

3о. Дана функция y = f(x), где f(x) = x2. При каких значениях х верно равенство

f(x - 4) = f(x + 3)?

4. Дана функция y = f(x), где х2, если -3  х  2,

-х + 6, если х > 2.

Используя график функции, установите:

а) область определения функции;

б) наибольшее и наименьшее значения функции

в) является ли функция непрерывной: если нет, то в каких точках терпит разрыв;

г) промежутки возрастания и убывания функции;

д) при каких значениях аргумента у = 0, у < 0, y > 0.

Постройте график функции