С днем учителя!

Адаптированная рабочая программа по физике, 7-9 классы

4
1
Материал опубликован 18 October 2017 в группе

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данная адаптированная рабочая программа составлена на основании:

1.Концепция Федерального государственного образовательного стандарта для обучающихся с ограниченными возможностями здоровья.

2.Приказ Министерства образования и науки Российской Федерации от 19.12.2014 № 1599 «Об утверждении федерального государственного образовательного стандарта образования обучающихся с умственной отсталостью (интеллектуальными нарушениями)».

3.Приказ Министерства образования и науки Российской Федерации от 19.12.2014 № 1598 «Об утверждении федерального государственного образовательного стандарта начального общего образования обучающихся с ограниченными возможностями здоровья».

4.Требования к условиям реализации основной образовательной программы на основе федеральных государственных образовательных стандартов начального общего образования для детей с ограниченными возможностями здоровья (проекты РПГУ им. А.И. Герцена): для детей с задержкой психического развития.

5.Рекомендации по осуществлению государственного контроля качества образования детей с ограниченными возможностями здоровья(проект, разработанный в рамках государственного контракта от 07.08.2013 № 07.027.11.0015).

6.Проекты адаптированных основных общеобразовательных программ в редакции от 30.03.2015.

7.Правовое регулирование инклюзивного образования в Федеральном законе «Об образовании в РФ».

8. Адаптированной основной образовательной программы и Устава государственного общеобразовательного учреждения МОУ «Талицкая СОШ» Вохомского района Костромской области.

9.Положения о рабочей программе МОУ «Талицкая СОШ»

10.Заключения медико-педагогической комиссии.

11. Фундаментального ядра содержания общего образования «Требований к результатам обучения», представленных в Стандарте основного общего образования, Программы для общеобразовательных учреждений. Физика. 7-9 кл./Авторы: А. В. Перышкин, Н. В. Филонович, Е. М. Гутник и реализуется по учебнику А. В. Перышкина «Физика. 7 класс». М.: Дрофа, 2011.

Рабочая программа определяет содержание и структуру учебного материала, последовательность его изучения, пути формирования системы знаний, умений и способов деятельности, развития, воспитания и социализации обучающихся; включает пояснительную записку, в которой прописаны требования к личностным и метапредметным результатам обучения; содержание курса с перечнем разделов с указанием числа часов, отводимых на их изучение, и требованиями к предметным результатам обучения; тематическое планирование с определением основных видов учебной деятельности школьников; рекомендации по оснащению учебного процесса.

Требования к уровню подготовки детей, испытывающих трудности в освоении общеобразовательных программ не соответствуют требованиям, предъявляемым к ученикам школы общего назначения. Такие дети, из-за особенностей своего психического развития, трудно усваивают программу по физике. В силу особенностей развития, нуждаются в дифференцированном и индивидуальном подходе, дополнительном внимании. В связи с этим в календарно-тематическое планирование включается блок «Коррекционно-развивающая работа». В данном блоке указаны коррекционные задачи решаемые педагогом в процессе обучения, целью которых является на основе решения развивающих упражнений развитие мыслительных операций, образного мышления, памяти, внимания, речи, а также осуществляется ликвидация пробелов в знаниях, закрепление изученного материала, отработка алгоритмов, повторение пройденного. Теория изучается без выводов сложных формул. Задачи, требующие применения сложных математических вычислений и формул, в особенности таких тем, как «Механическое движение» и «Архимедова сила», «Механическая энергия», решаются в классе с помощью учителя.

Для обучающегося характерны недостаточный уровень развития отдельных психических процессов (восприятия, внимания, памяти, мышления), снижение уровня интеллектуального развития, низкий уровень выполнения учебных заданий, низкая успешность обучения. Поэтому, при изучении физики требуется интенсивное интеллектуальное развитие средствами математики на материале, отвечающем особенностям и возможностям учащихся.

Рабочая программа определяет содержание и структуру учебного материала, последовательность его изучения, пути формирования системы знаний, умений и способов деятельности, развития, воспитания и социализации обучающихся; включает пояснительную записку, в которой прописаны требования к личностным и метапредметным результатам обучения; содержание курса с перечнем разделов с указанием числа часов, отводимых на их изучение, и требованиями к предметным результатам обучения; тематическое планирование с определением основных видов учебной деятельности школьников; рекомендации по оснащению учебного процесса.

Требования к уровню подготовки детей, испытывающих трудности в освоении общеобразовательных программ не соответствуют требованиям, предъявляемым к ученикам школы общего назначения. Такие дети, из-за особенностей своего психического развития, трудно усваивают программу по физике. В силу особенностей развития, нуждаются в дифференцированном и индивидуальном подходе, дополнительном внимании. В связи с этим в календарно-тематическое планирование включается блок «Коррекционно-развивающая работа». В данном блоке указаны коррекционные задачи решаемые педагогом в процессе обучения, целью которых является на основе решения развивающих упражнений развитие мыслительных операций, образного мышления, памяти, внимания, речи, а также осуществляется ликвидация пробелов в знаниях, закрепление изученного материала, отработка алгоритмов, повторение пройденного. Теория изучается без выводов сложных формул. Задачи, требующие применения сложных математических вычислений и формул, в особенности таких тем, как «Механическое движение» и «Архимедова сила», «Механическая энергия», решаются в классе с помощью учителя.

Для обучающегося характерны недостаточный уровень развития отдельных психических процессов (восприятия, внимания, памяти, мышления), снижение уровня интеллектуального развития, низкий уровень выполнения учебных заданий, низкая успешность обучения. Поэтому, при изучении физики требуется интенсивное интеллектуальное развитие средствами математики на материале, отвечающем особенностям и возможностям учащихся.

Общая характеристика учебного предмета

Школьный курс физики – системообразующий для естественнонаучных предметов, поскольку физические законы, мироздания, являются основой содержания курсов химии, биологии, географии и астрономии. Физика вооружает школьников научным методом познания, поз­воляющим получать объективные знания об окружающем мире.

В 7 классе происходит знакомство с физическими явлениями, методом научного познания, формирование основных физических понятий, приобретение умений измерять физические величины, проводить лабораторный эксперимент по заданной схеме.

Цели изучения физики в основной школе следующие:

усвоение учащимися смысла основных понятий и законов физики, взаимосвязи между ними;

формирование системы научных знаний о природе, ее фундаментальных законах для построения представления о физической картине мира;

систематизация знаний о многообразии объектов и явлений природы, о закономерностях процессов и о законах физики для осознания возможности разумного использования достижений науки в дальнейшем развитии цивилизации;

формирование убежденности в познаваемости окружающего мира и достоверности научных методов его изучения;

организация экологического мышления и ценностного отношения к природе.

Основной целью работы с учащимися с ЗПР является: повышение социальной адаптации детей через применение физических знаний на практике.

Главными условиями эффективности работы с такими учащимися являются индивидуализация, систематичность, постепенность и повторяемость.

Достижение целей обеспечивается решением следующих задач:

знакомство учащихся с методами исследования объектов и явлений природы;

приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлениях, физических величинах, характеризующих эти явления;

формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием измерительных приборов, широко применяемых в практической жизни;

овладение учащимися такими понятиями, как природное явление, эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки;

понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека.

Адресат программы

Программа составлена для учащихся 7-9классов , . которым по заключению ПМПК рекомендовано обучение по адаптированной образовательной программе для детей с ЗПР (вариант 7.1)

Педагогическая характеристика учащихся

Мальчик С М посещает МОУ «Талицкая СОШ» с 2016 года.

Воспитывается в приемной семье. Учебная мотивация не сформирована. Программный материал усваивает с трудом вследствие замедленного темпа познавательной деятельности, нарушений организации деятельности. Мальчику требуется постоянная организующая помощь учителя. При планировании нуждается в помощи педагога.

Коррекционно - образовательные и воспитательные задачи:

Адаптированная рабочая программа разработана с целью освоения содержания учебного предмета «Физика» для обучающегося с ЗПР.

Задачи:

1. Адаптирование образовательного процесса в соответствии с особенностями развития обучающегося с ЗПР.

2. Стимулирование интереса обучающегося к познавательной и учебной деятельности.

3. Развитие умений и навыков самостоятельной учебной деятельности.

Для обучающихся характерны:

замедленное психическое развитие

пониженная работоспособность, быстрая утомляемость, замедленный темп деятельности

нарушение внимания и памяти, особенно слухоречевой и долговременной

снижение познавательной активности.

При организации учебных занятий с обучающимся с ЗПР планирую:

1. Осуществлять индивидуальный подход к обучающемуся.

2. Предотвращать наступление утомления, используя для этого разнообразные средства (чередование умственной и практической деятельности, преподнесение материала небольшими дозами, использование интересного и красочного дидактического материала и т.д.).

3. Использовать методы обучения, которые активизируют познавательную деятельность детей, развивают их речь и формируют необходимые навыки.

4. Корректировать деятельность обучающегося.

5. Соблюдать повторность обучения на всех этапах урока.

6. Проявлять особый педагогический такт. Постоянно подмечать и поощрять малейшие успехи ребёнка, своевременно и тактично помогать, развивать в нем веру в собственные силы и возможности.

ОПИСАНИЕ МЕСТА УЧЕБНОГО ПРЕДМЕТА, КУРСА В УЧЕБНОМ ПЛАНЕ

1.Классы.Количество часов для изучения предмета в классах.Количество учебных недель. В основной школе физика изучается с 7 по 9 класс. Учебный план составляет 238 учебных часов, в том числе в 7, 8 классах по 68 учебных часов из расчета 2 учебных часа в неделю, а в 9 классе по 3 учебных часа.Количество учебных недель- 34 недели.

2.Количество практических, контрольных, лабораторных работ, бесед, экскурсий и т.д. по классам.

 

Лабораторные

Контрольные

Проверочные

7 класс

11

3

2

8 класс

11

7

2

9 класс

9

4

3

Базисный учебный план 7- 9 классов рассчитан на 238 часов для обязательного изучения курса «Физика».

Тематическое планирование для обучения в 7—8 классах составлено из расчета 2 часа (общий уровень) в неделю, а в 9 классе -3 часа в неделю.

Рабочая программа реализуется в учеб­никах А. В. Перышкина «Физика» для 7, 8 классов и А. В. Перышкина, Е. М. Гутник «Физика» для 9 класса системы «Вер­тикаль».

ЛИЧНОСТНЫЕ, МЕТАПРЕДМЕТНЫЕ И ПРЕДМЕТНЫЕ

РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА

Личностные результаты:

сформированность познавательных интересов на основе развития интеллектуальных и творческих способностей уча­щихся;

убежденность в возможности познания природы, в необ­ходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого обще­ства, уважение к творцам науки и техники, отношение к фи­зике как элементу общечеловеческой культуры;

готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;

мотивация образовательной деятельности школьников на основе личностно-ориентированного подхода;

формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обу­чения.

Метапредметные результаты:

овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, поста­новки целей, планирования, самоконтроля и оценки резуль­татов своей деятельности, умениями предвидеть возможные результаты своих действий;

понимание различий между исходными фактами и ги­потезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебны­ми действиями на примерах гипотез для объяснения извест­ных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;

формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символи­ческой формах, анализировать и перерабатывать получен­ную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, нахо­дить в нем ответы на поставленные вопросы и излагать его;

приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источни­ков и новых информационных технологий для решения по­знавательных задач;

развитие монологической и диалогической речи, уме­ния выражать свои мысли и способности выслушивать собе­седника, понимать его точку зрения, признавать право дру­гого человека на иное мнение;

освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;

формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.

.Предметные результаты обучения физике в основной школе представлены в содержании курса по темам.

Предметные результаты по 7 классу:

Введение:

Предметными результатами обучения по данной теме яв­ляются:

-понимание физических терминов: тело, вещество, ма­терия;

-умение проводить наблюдения физических явлений; измерять физические величины: расстояние, промежуток времени, температуру;

-владение экспериментальными методами исследова­ния при определении цены деления шкалы прибора и по­грешности измерения;

-понимание роли ученых нашей страны в развитии со­временной физики и влиянии на технический и социальный прогресс.

2.Первоначальные сведения о строении вещества.

Предметными результатами обучения по данной теме яв­ляются:

-понимание и способность объяснять физические явле­ния: диффузия, большая сжимаемость газов, малая сжима­емость жидкостей и твердых тел;

-владение экспериментальными методами исследова­ния при определении размеров малых тел;

-понимание причин броуновского движения, смачива­ния и несмачивания тел; различия в молекулярном стро­ении твердых тел, жидкостей и газов;

-умение пользоваться СИ и переводить единицы измере­ния физических величин в кратные и дольные единицы;

-умение использовать полученные знания в повсед­невной жизни (быт, экология, охрана окружающей среды).

3.Взаимодействия тел.

Предметными результатами обучения по данной теме яв­ляются:

-понимание и способность объяснять физические яв­ления: механическое движение, равномерное и неравномер­ное движение, инерция, всемирное тяготение;

-умение измерять скорость, массу, силу, вес, силу тре­ния скольжения, силу трения качения, объем, плотность те­ла, равнодействующую двух сил, действующих на тело и на­правленных в одну и в противоположные стороны;

-владение экспериментальными методами исследова­ния зависимости: пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести тела от его массы, силы трения скольжения от площади соприкоснове­ния тел и силы нормального давления;понимание смысла основных физических законов: за­кон всемирного тяготения, закон Гука;

-владение способами выполнения расчетов при нахож­дении: скорости (средней скорости), пути, времени, силы тя­жести, веса тела, плотности тела, объема, массы, силы упру­гости, равнодействующей двух сил, направленных по одной прямой;

-умение находить связь между физическими величина­ми: силой тяжести и массой тела, скорости со временем и пу­тем, плотности тела с его массой и объемом, силой тяжести и весом тела;

-умение переводить физические величины из несистем­ных в СИ и наоборот;

-понимание принципов действия динамометра, весов, встречающихся в повседневной жизни, и способов обеспече­ния безопасности при их использовании;

-умение использовать полученные знания в повседнев­ной жизни (быт, экология, охрана окружающей среды).

4.Давление твердых тел, жидкостей и газов.

Предметными результатами обучения по данной теме яв­ляются:

-понимание и способность объяснять физические явле­ния: атмосферное давление, давление жидкостей, газов и твердых тел, плавание тел, воздухоплавание, расположение уровня жидкости в сообщающихся сосудах, существование воздушной оболочки Землю; способы уменьшения и увели­чения давления;

-умение измерять: атмосферное давление, давление жидкости на дно и стенки сосуда, силу Архимеда;

-владение экспериментальными методами исследова­ния зависимости: силы Архимеда от объема вытесненной те­лом воды, условий плавания тела в жидкости от действия си­лы тяжести и силы Архимеда;

-понимание смысла основных физических законов и умение применять их на практике: закон Паскаля, закон Архимеда;

-понимание принципов действия барометра-анероида, манометра, поршневого жидкостного насоса, гидравличе­ского пресса и способов обеспечения безопасности при их ис­пользовании;

-владение способами выполнения расчетов для нахож­дения: давления, давления жидкости на дно и стенки сосуда, силы Архимеда в соответствии с поставленной задачей на ос­новании использования законов физики;

-умение использовать полученные знания в повседнев­ной жизни (экология, быт, охрана окружающей среды)

5.Работа и мощность. Энергия.

Предметными результатами обучения по данной теме яв­ляются:

-понимание и способность объяснять физические явле­ния: равновесие тел, превращение одного вида механиче­ской энергии в другой;

-умение измерять: механическую работу, мощность, плечо силы, момент силы, КПД, потенциальную и кинетиче­скую энергию;

-владение экспериментальными методами исследова­ния при определении соотношения сил и плеч, для равнове­сия рычага;

-понимание смысла основного физического закона: за­кон сохранения энергии; понимание принципов действия рычага, блока, на­клонной плоскости и способов обеспечения безопасности при их использовании;

-владение способами выполнения расчетов для нахож­дения: механической работы, мощности, условия равнове­сия сил на рычаге, момента силы, КПД, кинетической и по­тенциальной энергии;

-умение использовать полученные знания в повседнев­ной жизни (экология, быт, охрана окружающей среды).

Предметные результаты по 8 классу:

Тепловые явления.

Предметными результатами обучения по данной теме яв­ляются:

-понимание и способность объяснять физические явле­ния: конвекция, излучение, теплопровод-

ность, изменение внутренней энергии тела в результате теплопередачи или ра­боты внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испаре­нии, кипение, выпадение росы;

- умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавле­ния вещества, влажность воздуха;

-владение экспериментальными методами исследова­ния: зависимости относительной влажности воздуха от дав­ления водяного пара, содержащегося в воздухе при данной температуре; давления насыщенного водяного пара; опреде­ления удельной теплоемкости вещества;

-понимание принципов действия конденсационного и волосного гигрометров, психрометра, двигателя внутренне­го сгорания, паровой турбины и способов обеспечения без­опасности при их использовании;

-понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике;

-овладение способами выполнения расчетов для нахож­дения: удельной теплоемкости, количества теплоты, необхо­димого для нагревания тела или выделяемого им при охлаж­дении, удельной теплоты сгорания топлива, удельной тепло­ты плавления, влажности воздуха, удельной теплоты парообразования и конденсации, КПД теплового двигателя;

-умение использовать полученные знания в повседнев­ной жизни (экология, быт, охрана окружающей среды).

2.Электрические явления.

Предметными результатами обучения по данной теме яв­ляются:

-понимание и способность объяснять физические явле­ния: электризация тел, нагревание проводников электриче­ским током, электрический ток в металлах, электрические явления с позиции строения атома, действия электрического тока;

-умение измерять: силу электрического тока, электри­ческое напряжение, электрический заряд, электрическое со­противление;

-владение экспериментальными методами исследова­ния зависимости: силы тока на участке цепи от электриче­ского напряжения, электрического сопротивления провод­ника от его длины, площади поперечного сечения и матери­ала;

-понимание смысла основных физических законов и умение применять их на практике: закон сохранения элект­рического заряда, закон Ома для участка цепи, закон Джоуля - Ленца;

-понимание принципа действия электроскопа, электро­метра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания и способов обес­печения безопасности при их использовании;

-владение способами выполнения расчетов для нахож­дения: силы тока, напряжения, сопротивления при парал­лельном и последовательном соединении проводников, удельного сопротивления проводника, работы и мощности электрического тока, количества теплоты, выделяемого про­водником с током, емкости конденсатора, работы электриче­ского поля конденсатора, энергии конденсатора;

-умение использовать полученные знания в повседнев­ной жизни (экология, быт, охрана окружающей среды, техника безопасности).

3.Электромагнитные явления.

Предметными результатами обучения по данной теме яв­ляются:

-понимание и способность объяснять физические явле­ния: намагниченность железа и стали, взаимодействие маг­нитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током;

-владение экспериментальными методами исследова­ния зависимости магнитного действия катушки от силы то­ка в цепи;

-умение использовать полученные знания в повседнев­ной жизни (экология, быт, охрана окружающей среды, техника безопасности).

4.Световые явления.

Предметными результатами обучения по данной теме яв­ляются:

-понимание и способность объяснять физические явле­ния: прямолинейное распространение света, образование те­ни и полутени, отражение и преломление света;

-умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы;

-владение экспериментальными методами исследова­ния зависимости: изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало;

-понимание смысла основных физических законов и умение применять их на практике: закон отражения света, закон преломления света, закон прямолинейного распрост­ранения света;

-различать фокус линзы, мнимый фокус и фокусное рас­стояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой;

-умение использовать полученные знания в повседнев­ной жизни (экология, быт, охрана окружающей среды).

Предметные результаты по 9 классу

Законы взаимодействия и движения тел

Предметными результатами обучения по данной теме яв­ляются:

-понимание и способность описывать и объяснять физи­ческие явления: поступательное движение, смена дня и ночи на Земле, свободное падение тел, невесомость, движение по окружности с постоянной по модулю скоростью;

-знание и способность давать определения/описания физических понятий: относительность движения, геоцент­рическая и гелиоцентрическая системы мира; [первая кос­мическая скорость], реактивное движение; физических мо­делей: материальная точка, система отсчета; (В квадратные скобки заключен материал, не являющийся обя­зательным для изучения); физических величин: перемещение, скорость равномерного прямолиней­ного движения, мгновенная скорость и ускорение при равно­ускоренном прямолинейном движении, скорость и центро­стремительное ускорение при равномерном движении тела по окружности, импульс;

-понимание смысла основных физических законов: за­коны Ньютона, закон всемирного тяготения, закон сохране­ния импульса, закон сохранения энергии и умение приме­нять их на практике;

-умение приводить примеры технических устройств и живых организмов, в основе перемещения которых лежит принцип реактивного движения; знание и умение объяснять устройство и действие космических ракет-носителей;

-умение измерять: мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центрост­ремительное ускорение при равномерном движении по окружности;

-умение использовать полученные знания в повседнев­ной жизни (быт, экология, охрана окружающей среды).

Механические колебания и волны. Звук.

Предметными результатами обучения по данной теме яв­ляются:

-понимание и способность описывать и объяснять физи­ческие явления: колебания математического и пружинного маятников, резонанс (в том числе звуковой), механические
волны, длина волны, отражение звука, эхо; знание и способность давать определения физических понятий: свободные колебания, колебательная система, ма­ятник, затухающие колебания, вынужденные колебания, звук и условия его распространения;физических величин: амплитуда, период и частота колебаний, собственная часто­та колебательной системы, высота, [тембр], громкость звука, скорость звука; физических моделей: [гармонические коле­бания], математический маятник;

-владение экспериментальными методами исследова­ния зависимости периода и частоты колебаний маятника от длины его нити.

3.Электромагнитное поле.

Предметными результатами обучения по данной теме яв­ляются:

-понимание и способность описывать и объяснять физические явления/процессы: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейча­тых спектров испускания и поглощения;

-знание и способность давать определения/описания физических понятий: магнитное поле, линии магнитной ин­дукции, однородное и неоднородное магнитное поле, магнит­ный поток, переменный электрический ток, электромагнит­ное поле, электромагнитные волны, электромагнитные ко­лебания, радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амп­литуда электромагнитных колебаний, показатели преломле­ния света;

-знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, кван­товых постулатов Бора;

-знание назначения, устройства и принципа действия технических устройств: электромеханический индукцион­ный генератор переменного тока, трансформатор, колеба­тельный контур, детектор, спектроскоп, спектрограф;

-[понимание сути метода спектрального анализа и его возможностей].

4.Строение атома и атомного ядра.

Предметными результатами обучения по данной теме яв­ляются:

-понимание и способность описывать и объяснять физи­ческие явления: радиоактивность, ионизирующие излуче­ния;

-знание и способность давать определения/описания физических понятий: радиоактивность, альфа-, бета- и гам­ма-частицы; физических моделей: модели строения атомов, предложенные Д. Томсоном и Э. Резерфордом; протонно-нейтронная модель атомного ядра, модель процесса деления ядра атома урана; физических величин: поглощенная доза излучения, коэффициент качества, эквивалентная доза, пе­риод полураспада;

-умение приводить примеры и объяснять устройство и принцип действия технических устройств и установок: счет­чик Гейгера, камера Вильсона, пузырьковая камера, ядер­ный реактор на медленных нейтронах;

-умение измерять: мощность дозы радиоактивного из­лучения бытовым дозиметром;

-знание формулировок, понимание смысла и умение применять: закон сохранения массового числа, закон сохра­нения заряда, закон радиоактивного распада, правило сме­щения;

-владение экспериментальными методами исследова­ния в процессе изучения зависимости мощности излучения продуктов распада радона от времени;

-понимание сути экспериментальных методов исследо­вания частиц;

-умение использовать полученные знания в повседнев­ной жизни (быт, экология, охрана окружающей среды, тех­ника безопасности и др.).

5.Строение и эволюция Вселенной

Предметными результатами обучения по данной теме яв­ляются:

-представление о составе, строении, происхождении и возрасте Солнечной системы;

-умение применять физические законы для объяснения движения планет Солнечной системы;

-знать, что существенными параметрами, отличающи­ми звезды от планет, являются их массы и источники энер­гии (термоядерные реакции в недрах звезд и радиоактивные в недрах планет);

-сравнивать физические и орбитальные параметры пла­нет земной группы с соответствующими параметрами пла­нет-гигантов и находить в них общее и различное;

-объяснять суть эффекта Х. Доплера; формулировать и объяснять суть закона Э. Хаббла, знать, что этот закон явил­ся экспериментальным подтверждением модели нестаци­онарной Вселенной, открытой А. А. Фридманом.

Содержание УЧЕБНОГО курса

7 класс (68 ч, 2 ч в неделю)

Введение (4 ч)

Физика — наука о природе. Физические явления. Физические свойства тел. Наблюдение и описание физиче­ских явлений. Физические величины. Измерения физических величин: длины, времени, температуры. Физические приборы. Международная система единиц. Точность и по­грешность измерений. Физика и техника.

Фронтальная лабораторная работа

1. Определение цены деления измерительного прибора.

Первоначальные сведения о строении вещества (4ч)

Строение вещества. Опыты, доказывающие атомное строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие частиц вещества. Агрегат­ные состояния вещества. Модели строения твердых тел, жидкостей и газов. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярно-кинетических представ­лений.

Фронтальная лабораторная работа

2. Определение размеров малых тел.

Взаимодействия тел (22 ч)

Механическое движение. Траектория. Путь. Равно­мерное и неравномерное движение. Скорость. Графики зави­симости пути и модуля скорости от времени движения. Инерция. Инертность тел. Взаимодействие тел. Масса тела. Измерение массы тела. Плотность вещества. Сила. Сила тя­жести. Сила упругости. Закон Гука. Вес тела. Связь между силой тяжести и массой тела. Сила тяжести на других плане­тах. Динамометр. Сложение двух сил, направленных по од­ной прямой. Равнодействующая двух сил. Сила трения. Фи­зическая природа небесных тел Солнечной системы.

Фронтальные лабораторные работы

3. Измерение массы тела на рычажных весах.

Измерение объема тела.

Определение плотности твердого тела.

Градуирование пружины и измерение сил динамометром.

Измерение силы трения с помощью динамометра.

Давление твердых тел, жидкостей и газов (22 ч)

Давление. Давление твердых тел. Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений. Передача давления газами и жидкостя­ми. Закон Паскаля. Сообщающиеся сосуды. Атмосферное давление. Методы измерения атмосферного давления. Баро­метр, манометр, поршневой жидкостный насос. Закон Архи­меда. Условия плавания тел. Воздухоплавание.

Фронтальные лабораторные работы

8. Определение выталкивающей силы, действующей на погруженное в жидкость тело.

9. Выяснение условий плавания тела в жидкости.

Работа и мощность. Энергия (13ч)

Механическая работа. Мощность. Простые механиз­мы. Момент силы. Условия равновесия рычага. «Золотое правило» механики. Виды равновесия. Коэффициент полез­ного действия (КПД). Энергия. Потенциальная и кинетиче­ская энергия. Превращение энергии.

Фронтальные лабораторные работы

10. Выяснение условия равновесия рычага.

11. Определение КПД при подъеме тела по наклоннойплоскости.

Повторение и обобщение (3 часа)

8 класс (68 ч, 2 ч в неделю)

Тепловые явления (23 ч)

Тепловое движение. Тепловое равновесие. Темпера­тура. Внутренняя энергия. Работа и теплопередача. Тепло­проводность. Конвекция. Излучение. Количество теплоты. Удельная теплоемкость. Расчет количества теплоты при теп­лообмене. Закон сохранения и превращения энергии в меха­нических и тепловых процессах. Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испаре­ние и конденсация. Кипение. Влажность воздуха. Удельная теплота парообразования. Объяснение изменения агрегатно­го состояния вещества на основе молекулярно-кинетических представлений. Преобразование энергии в тепловых маши­нах. Двигатель внутреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы исполь­зования тепловых машин.

Фронтальные лабораторные работы

1.Сравнение количеств теплоты при смешивании во­ды разной температуры.

2.Измерение удельной теплоемкости твердого тела.

3.Измерение влажности воздуха.

Электрические явления (29 ч)

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Проводники, диэлектри­ки и полупроводники. Электрическое поле. Закон сохране­ния электрического заряда. Делимость электрического заря­да. Электрон. Строение атома. Электрический ток. Действие электрического поля на электрические заряды. Источники тока. Электрическая цепь. Сила тока. Электрическое напря­жение. Электрическое сопротивление. Закон Ома для участ­ка цепи. Последовательное и параллельное соединение про­водников. Работа и мощность электрического тока. Закон Джоуля - Ленца. Конденсатор. Правила безопасности при работе с электроприборами.

Фронтальные лабораторные работы

4. Сборка электрической цепи и измерение силы тока в ее различных участках.

Измерение напряжения на различных участках элект­рической цепи.

Регулирование силы тока реостатом. Измерение сопротивления проводника при помощи ам­перметра и вольтметра.

Измерение мощности и работы тока в электрической лампе.

Электромагнитные явления (5 ч)

Опыт Эрстеда. Магнитное поле. Магнитное поле пря­мого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли. Взаимодействие магнитов. Действие магнитно­го поля на проводник с током. Электрический двигатель.

Фронтальные лабораторные работы

9. Сборка электромагнита и испытание его действия.

10. Изучение электрического двигателя постоянного тока(на модели).

Световые явления (10 ч)

Источники света. Прямолинейное распространение света. Видимое движение светил. Отражение света. Закон отражения света. Плоское зеркало. Преломление света. За­кон преломления света. Линзы. Фокусное расстояние лин­зы. Оптическая сила линзы. Изображения, даваемые лин­зой. Глаз как оптическая система. Оптические приборы.Фронтальная лабораторная работа

11. Получение изображения при помощи линзы.

Повторение и обобщение (1час)

9 класс (102 ч, 3 ч в неделю)

Законы взаимодействия и движения тел (31 ч)

Материальная точка. Система отсчета. Перемеще­ние. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механическо­го движения. Геоцентрическая и гелиоцентрическая систе­мы мира. Инерциальная система отсчета. Законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготе­ния. [Искусственные спутники Земли.]1 Импульс. Закон со­хранения импульса. Реактивное движение.

Фронтальные лабораторные работы

1. Исследование равноускоренного движения без на­чальной скорости.

2. Измерение ускорения свободного падения.

Механические колебания и волны. Звук (17 ч)

Колебательное движение. Колебания груза на пру­жине. Свободные колебания. Колебательная система. Маят­ник. Амплитуда, период, частота колебаний. [Гармониче­ские колебания]. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колеба­ния. Резонанс. Распространение колебаний в упругих сре­дах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. [Интерференция звука].

Фронтальная лабораторная работа

3. Исследование зависимости периода и частоты сво­бодных колебаний маятника от длины его нити.

Электромагнитное поле (20 ч)

Однородное и неоднородное магнитное поле. Направ­ление тока и направление линий его магнитного поля. Пра­вило буравчика. Обнаружение магнитного поля. Правило ле­вой руки. Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндук­ции. Переменный ток. Генератор переменного тока. Преоб­разования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электро­магнитное поле. Электромагнитные волны. Скорость распро­странения электромагнитных волн. Влияние электромаг­нитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принци­пы радиосвязи и телевидения. [Интерференция света.] Электромагнитная природа света. Преломление света. Пока­затель преломления. Дисперсия света. Цвета тел. [Спектро­граф и спектроскоп.] Типы оптических спектров. [Спект­ральный анализ.] Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Фронтальные лабораторные работы

4. Изучение явления электромагнитной индукции.

5. Наблюдение сплошного и линейчатых спектров испу­скания.

Строение атома и атомного ядра (17ч)

Радиоактивность как свидетельство сложного стро­ения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превраще­ния атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Экспериментальные методы иссле­дования частиц. Протонно-нейтронная модель ядра. Физи­ческий смысл зарядового и массового чисел. Изотопы. Пра­вила смещения для альфа- и бета-распада при ядерных реак­циях. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические про­блемы работы атомных электростанций. Дозиметрия. Пери­од полураспада. Закон радиоактивного распада. Влияние ра­диоактивных излучений на живые организмы. Термоядер­ная реакция. Источники энергии Солнца и звезд.

Фронтальные лабораторные работы

6. Измерение естественного радиационного фона до­зиметром.

7. Изучение деления ядра атома урана по фотографии тре­ков.

Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.

Изучение треков заряженных частиц по готовым фото­графиям.

Строение и эволюция Вселенной (11ч)

Состав, строение и происхождение Солнечной систе­мы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

Повторение и обобщение (6часов.)

Перечень лабораторных работ

7 класс, фронтальные лабораторные работы:

1.Определение цены деления измерительного при­бора.

2.Определение размеров малых тел.

3. Измерение массы тела на рычажных весах.

4.Измерение объема тела.

5.Определение плотности твердого тела.

6.Градуирование пружины и измерение сил динамометром.

7.Измерение силы трения с помощью динамометра.

8.Определение выталкивающей силы, действующей на погруженное в жидкость тело.

9. Выяснение условий плавания тела в жидкости.

10. Выяснение условия равновесия рычага.

11. Определение КПД при подъеме тела по наклонной плоскости.

8 класс, фронтальные лабораторные работы:

1. Сравнение количеств теплоты при смешивании во­ды разной температуры.

2.Измерение удельной теплоемкости твердого тела.

3.Измерение влажности воздуха.

4. Сборка электрической цепи и измерение силы тока в ее различных участках.

5.Измерение напряжения на различных участках элект­рической цепи.

6.Регулирование силы тока реостатом.

7.Измерение сопротивления проводника при помощи ам­перметра и вольтметра.

8.Измерение мощности и работы тока в электрической лампе.

9. Сборка электромагнита и испытание его действия. 10. Изучение электрического двигателя постоянного тока (на модели). 11. Получение изображения при помощи линзы.

9 класс, фронтальные лабораторные работы:

1. Исследование равноускоренного движения без на­чальной скорости.

2. Измерение ускорения свободного падения.

3. Исследование зависимости периода и частоты сво­бодных колебаний маятника от длины его нити.

4. Изучение явления электромагнитной индукции.

5. Наблюдение сплошного и линейчатых спектров испу­скания.

6. Измерение естественного радиационного фона до­зиметром.

7. Изучение деления ядра атома урана по фотографии тре­ков.

8.Оценка периода полураспада находящихся в воздухе продуктов распада газа радона.

9.Изучение треков заряженных частиц по готовым фото­графиям.

Рекомендации, которые необходимо помнить при адаптированном обучении школьников:

1. При опросе необходимо: давать алгоритм ответа; разрешать пользоваться планом, составленным при подготовке домашнего задания; давать больше времени готовиться к ответу у доски; разрешать делать предварительные записи, пользоваться наглядными пособиями.

2. По возможности задавать обучающемуся наводящие вопросы, которые помогут ему последовательно изложить материал.

3. Систематически проверять усвоение материала по темам уроков, на которых обучающийся отсутствовал по той или иной причине.

4. В ходе опроса и при анализе его результатов создать атмосферу доброжелательности.

5. В процессе изучения нового материала внимание слабоуспевающего ученика обращается на наиболее сложные разделы изучаемой темы. Необходимо чаще обращаться к нему с вопросами, выясняющими понимание учебного материала, стимулировать вопросы при затруднениях в усвоении нового материала.

6. В ходе самостоятельной работы на уроке обучающемуся по адаптированной программе рекомендуется давать упражнения, направленные на устранение ошибок, допускаемых им при устных ответах или в письменных работах.

7. Необходимо отмечать положительные моменты в их работе, затруднения и указывать способы их устранения, оказывать помощь с одновременным развитием самостоятельности в учении.

Учебный и дидактический материал.

При освоении вариант 7.1. АООП обучающиеся с ЗПР обучаются по базовым учебникам для сверстников, не имеющих ограничений здоровья, со специальными, учитывающими особые образовательные потребности, приложениями и дидактическими материалами (преимущественное использование натуральной и иллюстративной наглядности), рабочими тетрадями и пр. на бумажных и/или электронных носителях, обеспечивающими реализацию программы коррекционной работы, и специальную поддержку освоения АООП..

ОЦЕНИВАНИЕ РАБОТ

КОСы используются те же, что и в основной школе, но шкала оценивания несколько другая: понижена на 20% или не учитываются задания повышенного уровня. Оценка 3 выставляется при выполнении работы на одну треть. 3

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ ОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ПО ФИЗИКЕ

В результате изучения физики ученик должен знать/понимать:

смысл понятий: физическое явление, физический закон, вещество, взаимодействие, электрическое поле, магнитное поле, волна, атом, атомное ядро, ионизирующие излучения;

смысл физических величин:путь, скорость, ускорение, масса, плотность, сила, давление, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, внутренняя энергия, температура, количество теплоты, удельная теплоемкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокусное расстояние линзы;

смысл физических законов:Паскаля, Архимеда, Ньютона, всемирного тяготения, сохранения импульса и механической энергии, сохранения энергии в тепловых процессах, сохранения заряда, Ома для участка цепи, Джоуля-Ленца, прямолинейного распространения света, отражения света;

использовать приобретенные знания и умения на практике и в повседневной жизни для:

обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники;

контроля за исправностью электропроводки, водопровода, сантехники и газовых приборов в квартире;

рационального применения простых механизмов;

оценки безопасности радиационного фона

в формате Microsoft Word (.doc / .docx)
Комментарии

Здравствуйте, Надежда Владимировна! Можно узнать, как справляется ребенок с освоением программы?

5 January 2018