Мастер-класс «Мое решение одной экономической задачи №17 из ЕГЭ по математике профильного уровня 2018 года»
Мое решение задачи№17(один тип) ЕГЭ 2018 год
Математика - профиль
15января планируется взять кредит в банке на некоторую сумму на 21 месяц. Условия его возврата таковы:
-1числа каждого месяца долг увеличивается на 1% по сравнению с концом предыдущего месяца;
- с 2 по 14 число каждого месяца необходимо выплатить одним платежом часть долга;
- на 15 число каждого с 1 по20 месяц долг должен уменьшаться на 40 тыс. руб.;
- за двадцать первый месяц долг должен быть погашен полностью.
Сколько тысяч рублей составляет долг на 15 число 20-го месяца, если банку всего было выплачено 1852 тыс. рублей?
Решение
Пусть S - сумма кредита. Составим таблицу:
Месяц |
Долг на 1-е число месяца |
Выплаты со 2 по 14 число месяца |
Остаток долга на 15 число месяца |
1 месяц |
|||
2 месяц |
|||
3 месяц |
|||
и т.д. |
|||
20 месяц |
|||
21 месяц |
0 |
Сумма всех выплат по условию задачи. Найти в задаче надо долг на 15 число 20-го месяца, т.е .
Заметим, что - образуют арифметическую прогрессию, т.к уменьшаются на 40 тыс.руб. для этой прогрессии первый член равен , а двадцатый . Можно найти сумму этой прогрессии используя известную формулу
Получим
К полученной сумме осталось прибавить и мы получим 1852 тыс.рублей. Поучаем уравнение, относительно S.
;
Осталось найти то, что требуется в задаче =1600-800=800 тыс.руб.
Ответ: 800 тыс. рублей.