Рабочая программа по математике для 7 класса по УМК Ю.Н. Макарычева

3
0
Материал опубликован 8 October 2016

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа по математике для 7 класса основной общеобразовательной школы составлена в соответствии с требованиями Федерального компонента государственного стандарта основного общего образования (Приказ МОиН РФ от 05.03.2004г. № 1089.), на основе примерных программ основного общего образования по математике (базовый уровень) и авторской программы курса алгебры для учащихся 7 – 9 классов общеобразовательных учреждений (составитель Т.А. Бурмистрова, 2008 г.), авторской программы курса геометрии для учащихся 7 – 9 классов общеобразовательных учреждений (составитель Т.А. Бурмистрова, 2008 г.), с учетом базисного учебного плана.

Рабочая программа включает: пояснительную записку, содержание курса по основным линиям, примерное тематическое планирование с указанием примерного числа часов на изучение соответствующего материала и описанием формируемых компетенций учащихся, требования к результатам освоения курса математики основной школы. К программе прилагаются календарно-тематическое планирование учебного материала.

Учебный процесс ориентирован на: рациональное сочетание устных и письменных видов работы как при изучении теории, так и при решении задач; сбалансированное сочетание традиционных и новых методов обучения; оптимизированное применение объяснительно-иллюстративных и эвристических методов; использование современных технических средств обучения.

Преобладающей формой текущего контроля выступает письменный (тесты, самостоятельные и контрольные работы) и устный опрос.

Для реализации учебной программы используется используются следующие учебники:

1. Алгебра. 7 класс: учебник для общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков С.Б. Суворова. – М.: Просвещение, 2014.

2. Геометрия. 7 – 9 классы: учебник для общеобразовательных организаций / А.В.Погорелов. – М.: Прсвещение, 2014.

Рабочая программа выполняет две основные функции.

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Цели

Изучение математики в 7 классе направлено на достижение следующих целей:

- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;

- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;

- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии;

- развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников.

На основании требований государственного образовательного стандарта в содержании планирования предполагается реализовать актуальные в настоящее время компетентностный, личностно-ориентированный, деятельностный подходы, которые определяют задачи обучения:

приобретение математических знаний и умений;

овладение обобщенными способами мыслительной, творческой деятельности;

освоение компетенций: учебно-познавательной, коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентированной и профессионально-трудового выбора.

Согласно федеральному базисному учебному плану на изучение математики в 7 классе отводится 175 часов из расчета 5 ч в неделю: 3 часа в неделю алгебры и 2 часа в неделю геометрии в течение всего учебного года, итого 105 часов алгебры и 70 часов геометрии.

Содержание тем учебного МОДУЛЯ «АЛГЕБРА»

1. Выражения и их преобразования. Уравнения

Числовые выражения и выражения с переменными. Числовое значение буквенного выражения. Равенство буквенных выражений. Тождество, доказательство тождеств. Простейшие преобразования выражений с переменными. Уравнение с одним неизвестным и его корень. Линейное уравнение. Решение задач с использованием линейных уравнений.

Цель: систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений даёт возможность повторить с обучающимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки ≥ и ≤, дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия обучающимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах=b при различных значениях а и b. Продолжается работа по формированию у обучающихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

2. Статистические характеристики

Среднее арифметическое, размах и мода. Медиана как статистическая характеристика.

Учащиеся должны уметь пользовать эти характеристики для анализа ряда данных в несложных ситуациях.

3. Функции

Понятие функции. Область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и её график.

Цель: ознакомить обучающихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке обучающихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у обучающихся умений находить по формуле значение функции по известному значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу. Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции у=кх, где к0, как зависит от значений к и b взаимное расположение графиков двух функций вида у=кх+b.

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.

4. Степень с натуральным показателем

Степень с натуральным показателем и её свойства. Одночлен. Функции y = x2, y = x3 и их графики.

Цель: выработать умение выполнять действия над степенями с натуральными показателями.

В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора; Рассматриваются свойства степени с натуральным показателем: На примере доказательства свойств аm · аn = аm+n; аm : аn = аm-n, где m > n; (аm)n = аm·n; (ab)m = ambm учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений содержащих степени, особое внимание следует обратить на порядок действий.

Рассмотрение функций у=х2, у=х3 позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание обучающихся на особенности графика функции у=х2: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

Умение строить графики функций у=х2 и у=х3 используется для ознакомления обучающихся с графическим способом решения уравнений.

5. Многочлены

Многочлен. Степень многочлена. Сложение, вычитание и умножение многочленов. Разложение многочлена на множители: вынесением общего множителя за скобки, способом группировки.

Цель: выработать умение выполнять сложе­ние, вычитание, умножение многочленов и разложение многочленов на множители.

Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами — сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

6. Формулы сокращённого умножения

Формулы сокращенного умножения: квадрат суммы, квадрат разности, куб суммы и куб разности. Формула разности квадратов, формулы суммы кубов и разности кубов. Применение формул сокращенного умножения к разложению на множители, в преобразованиях выражений.

Цель: выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у обучающихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (а - b)(а + b) = а2 - b 2, (а ± b)2 = а2± 2а b + b2. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево». Наряду с указанными рассматриваются также формулы ± b)3 = а3 ± За2 b + За b2 ± b3, (а ± b) 2 а b + b2) = а3 ± b3. Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

7. Системы линейных уравнений

Линейное уравнение с двумя переменными, его графическая интерпретация. Система уравнений, понятие решения системы уравнений с двумя переменными; решение линейных систем подстановкой и алгебраическим сложением. Графическая интерпретация системы линейных уравнений с двумя переменными. Решение задач методом составления линейных систем уравнений.

Цель: ознакомить обучающихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.

Формируется умение строить график уравнения ах + bу=с, где а≠0 или b≠0, при различных значениях а, b, с. Введение графических образов даёт возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений с двумя переменными. Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

8. Повторение. Решение задач (8 часов/ 12 часов/ 14 часов, из них 2 часа контрольные работы)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 7 класса.

Учебно-тематический план

темы

ТЕМА

Кол-во часов

1

Выражения и их преобразования. Уравнения

18

2

Статистические характеристики

4

3

Функции

11

4

Степень с натуральным показателем

11

5

Многочлены

17

6

Формулы сокращённого умножения

19

7

Системы линейных уравнений

16

8

Повторение

6

 

Резерв

3

 

Итого:

105

Содержание тем учебного МОДУЛЯ «ГеоМЕТРИЯ»

1. Основные свойства простейших геометрических фигур

Возникновение геометрии из практики. Начальные понятия планиметрии. Геометрические фигуры: точка, прямая, луч, плоскость. Отрезок, ломаная. Длина отрезка и его свойства. Угол. Виды углов: прямой, тупой, острый. Величина угла и ее свойства. Равенство отрезков, углов, треугольников. Теоремы и доказательства. Аксиомы.

В данной теме вводятся основные свойства простейших геометрических фигур (аксиомы планиметрии) на основе наглядных представлений учащихся путем обобщения очевидных или известных из курса математики 1—6 классов геометрических
фактов. При этом основное внимание уделяется постепенному формированию навыков применения свойств геометрических фигур в ходе решения задач.

Важной задачей темы является введение терминологии, развитие у учащихся наглядных геометрических представлений и навыков изображения плоских фигур, устной математической речи, что необходимо для всего последующего изучения курса геометрии. При выполнении практических заданий обращается внимание на работу с рисунками, поиск решения и постепенное формирование навыков доказательных рассуждений.

2. Смежные и вертикальные углы

Смежные и вертикальные углы и их свойства. Биссектриса угла и её свойства. Параллельные прямые. Определения, доказательства, аксиомы и теоремы, следствия. Перпендикулярность прямых. Доказательство от противного.

При изучении смежных и вертикальных углов основное внимание уделяется отработке навыков применения их свойств в процессе решения задач. При этом активно используются имеющиеся у учащихся вычислительные навыки, а также навыки составления и решения линейных уравнений.

На примере теоремы о существовании и единственности перпендикуляра к прямой, проведенного через ее точку, рассматривается метод доказательства от противного, который будет неоднократно использоваться в курсе планиметрии.

3. Признаки равенства треугольников

Треугольник, прямоугольные, остроугольные и тупоугольные треугольники. Признаки равенства треугольников: первый, второй, третий. Медиана, биссектриса и высота треугольника. Равнобедренный и равносторонний треугольники. Свойства и признаки равнобедренного треугольника. Прямая и обратная теоремы.

Основная цель: изучить признаки равенства треугольников; сформировать умение доказывать равенство треугольни­ков с опорой на признаки равенства треугольников.

Использование признаков равенства треугольников — один из главнейших методов доказательства теорем и решения задач, поэтому материал данной темы является основополагающим во всем курсе геометрии и занимает центральное место в содержании курса планиметрии 7 класса.

Признаки равенства треугольников должны усваиваться в процессе решения задач, при этом закрепляются формулировки и формируются умения их практического применения. Многие доказательные рассуждения построены по схеме: выделение равных элементов треугольников — доказательство равенства треугольников — следствия, вытекающие из равенства. На формирование этих умений необходимо обратить самое пристальное внимание. В данной теме полезно уделить внимание решению задач по готовым чертежам.

Введение понятий медианы, биссектрисы и высоты равнобедренного треугольника, свойств равнобедренного треугольника расширяет класс задач на доказательство равенства треугольников.

4. Сумма углов треугольника

Параллельные прямые. Основное свойство параллельных прямых. Признаки параллельности прямых. Сумма углов треугольника. Внешний угол треугольника. Признаки равенства прямоугольных треугольников. Перпендикуляр и наклонная к прямой. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Свойство серединного перпендикуляра к отрезку.

Основная цель: дать систематизированные сведения о параллельности прямых; расширить знания учащихся о треугольниках,

В начале изучения параллельных прямых вводится последняя из аксиом планиметрии — аксиома параллельных прямых. Знание признаков параллельности прямых, свойств углов при параллельных прямых и секущей находит затем широкое применение при изучении четырехугольников, подобия треугольников, а также в курсе стереометрии. Поэтому в ходе решения задач следует уделять значительное внимание формированию умений доказывать параллельность данных прямых с использованием соответствующих признаков, находить углы при параллельных прямых и секущей.

В данной теме рассматривается одна из важнейших теорем курса — теорема о сумме углов треугольника. Эта теорема позволяет получить важные следствия — свойство внешнего угла треугольника и признак равенства прямоугольных треугольников.

В конце темы вводится понятие расстояния от точки до прямой. При введении понятия расстояния между параллельными прямыми у учащихся формируется представление о параллельных прямых как равноотстоящих друг от друга, что будет в дальнейшем использоваться для проведения обоснований в курсе планиметрии и при изучении стереометрии.

5. Геометрические построения

Окружность и круг. Центр окружности, радиус, диаметр. Взаимное расположение прямой и окружности. Касательная и секущая к окружности, свойство касательной к окружности, равенство касательных, проведенных из одной точки. Замечательные точки треугольника: точки пересечения серединных перпендикуляров, биссектрис. Окружность, описанная около треугольника. Окружность, вписанная в треугольник. Основные задачи на построение с помощью циркуля и линейки: построение треугольника по трём сторонам; угла, равного данному; биссектрисы угла; перпендикуляра к прямой, деление отрезка пополам. Понятие о геометрическом месте точек.

Основная цель: систематизировать и расширить знания учащихся о свойствах окружности; сформировать умение решать простейшие задачи на построение с помощью циркуля и линейки.

В данной теме отрабатываются вопросы равенства радиусов одной окружности, перпендикулярности касательной и радиуса, проведенного в точку касания, положения центров описанной около треугольника и вписанной в треугольник окружностей.

Значительное внимание в данной теме уделяется формированию практических навыков построений с помощью циркуля и линейки при решении простейших задач. Формируются умения, связанные с выполнением основных построений, необходимых для решения комбинированных задач. При этом задача считается решенной, если указана последовательность выполняемых операций и доказано, что получаемая таким образом фигура удовлетворяет условию задачи.

5. Повторение.

Основная цель: повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7 класса.

Учебно-тематический план

темы

ТЕМА

Кол-во часов

1

Основные свойства простейших геометрических фигур

16

2

Смежные и вертикальные углы

8

3

Признаки равенства треугольников

14

4

Сумма углов треугольника

12

5

Геометрические построения

13

6

Повторение

5

7

Резерв

2

 

Итого:

70

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ СЕМИКЛАССНИКОВ ПО МАТЕМАТИКЕ

В результате изучения математики ученик должен

ЗНАТЬ / ПОНИМАТЬ:

существо понятия математического доказательства; примеры доказательств;

как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;

как потребности практики привели математическую науку к необходимости расширения понятия числа;

примеры статистических закономерностей и выводов;

каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;

Арифметика

УМЕТЬ:

выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным числителем и знаменателем;

переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты – в виде дроби и дробь – в виде процентов;

выполнять арифметические действия с рациональными числами, сравнивать рациональные числа; находить значения числовых выражений;

округлять целые числа и десятичные дроби, находить приближения чисел с избытком и недостатком, выполнять оценку числовых выражений;

пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;

решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

ИСПОЛЬЗОВАТЬ ПРИОБРЕТЕННЫЕ ЗНАНИЯ И УМЕНИЯ В ПРАКТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ И ПОВСЕДНЕВНОЙ ЖИЗНИ для:

решение несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора;

устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;

интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

Алгебра

УМЕТЬ:

составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;

выполнять основные действия со степенями с натуральными показателями, с многочленами; выполнять разложение многочленов на множители;

решать линейные уравнения , системы двух линейных уравнений;

решать текстовые задачи алгебраическим методом, интепретировать полученный результат;

изображать числа точками на координатной прямой;

определять координаты точки плоскости, строить точки с заданными координатами;

находить значения функции, заданной формулой, таблицей, графиком

по ее аргументу; находить значение аргумента по значению функции,

заданной графиком или таблицей;

применять графические представления при решении систем уравнений;

описывать свойства изученных функций, строить их графики;

ИСПОЛЬЗОВАТЬ ПРИОБРЕТЕННЫЕ ЗНАНИЯ И УМЕНИЯ В ПРАКТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ И ПОВСЕДНЕВНОЙ ЖИЗНИ для:

выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;

моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;

описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;

интерпретации графиков реальных зависимостей между величинами;

Геометрия

УМЕТЬ:

пользоваться геометрическим языком для описания предметов окружающего мира;

распознавать геометрические фигуры, различать их взаимное расположение;

распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;

вычислять значения геометрических величин (длин, углов, площадей, объемов), находить длины ломаных, площади основных геометрических фигур и фигур, составленных из них;

ИСПОЛЬЗОВАТЬ ПРИОБРЕТЕННЫЕ ЗНАНИЯ И УМЕНИЯ В ПРАКТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ И ПОВСЕДНЕВНОЙ ЖИЗНИ для:

описания реальных ситуаций на языке геометрии;

построение геометрическими инструментами (линейка, угольник, циркуль, транспортир);

Элементы логики, комбинаторики, статистики и теории вероятностей

УМЕТЬ:

проводить несложные доказательства;

извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;

вычислять средние значения результатов измерений;

ИСПОЛЬЗОВАТЬ ПРИОБРЕТЕННЫЕ ЗНАНИЯ И УМЕНИЯ В ПРАКТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ И ПОВСЕДНЕВНОЙ ЖИЗНИ для:

выстраивания аргументации при доказательстве (в форму монолога и диалога);

записи математических утверждений;

анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;

решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости.

Литература

Программы общеобразовательных учреждений. Геометрия 7-9 классы. Составитель Бурмистрова Т.А. – М.: «Просвещение», 2009.

Программы общеобразовательных учреждений. Алгебра 7-9 классы. Составитель Бурмистрова Т.А. – М.: «Просвещение», 2009.

Макарычев Ю. Н., Миндюк Н. Г., Нешков К. И., Суворова С. Б. Алгебра 7: Учебник для общеобразовательных учреждений. – М.: Просвещение, 2012.

Геометрия, 7-9: Учебник для общеобразовательных учреждений / А.В.Погорелов. – М.: Просвещение, 2014.

Комментарии
Комментариев пока нет.