Урок биологии в старшей школе «Анаболизм. Реализация наследственной информации — биосинтез белка»

3
0
Материал опубликован 17 April 2018 в группе

 

Методические разработки уроков 10-11класс

Тип урока - комбинированный

Методы: частично-поисковый, про­блемного изложения, объясни­тельно-иллюстративный.

Цель:

- формирование у учащихся целостной системы знаний о живой природе, ее системной организации и эволюции;

-умения давать аргументированную оценку новой информации по биоло­гическим вопросам;

-воспитание гражданской ответственности, самостоятельности, инициативности

Задачи:

Образовательные: о биологических системах (клетка, организм, вид, экосистема); истории развития современных представлений о живой природе; выдающихся открытиях в биологической науке; роли биологической науки в формировании современной естественнонаучной картины мира; методах научного познания;

 Развитие творческих способностей в процессе изучения выдающихся достижений биологии, вошедших в общечеловеческую культуру; сложных и противоречивых путей развития современных научных взглядов, идей, теорий, концепций, различных гипотез (о сущности и происхождении жизни, человека) в ходе работы с различными источниками информации;

Воспитание убежденности в возможности познания живой природы, необходимости бережного отношения к природной среде, собственному здоровью; уважения к мнению оппонента при обсуждении биологических проблем

УУД

Личностные результаты обучения биологии:

1. воспитание российской гражданской идентичности: патриотизма, любви и уважения к Отечеству, чувства гордости за свою Родину; осознание своей этнической принадлежности; усвоение гуманистических и традиционных ценностей многонационального российского общества; воспитание чувства ответственности и долга перед Родиной;

2. формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;

Метапредметные результаты обучения биологии:

1. умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;

2. овладение составляющими исследовательской и проектной деятельности, включая умения видеть проблему, ставить вопросы, выдвигать гипотезы;

3. умение работать с разными источниками биологической информации: находить биологическую информацию в различных источниках (тексте учебника, научно популярной литературе, биологических словарях и справочниках), анализировать и

оценивать информацию;

Познавательные: выделение существенных признаков биологических объектов и процессов; приведение доказательств (аргументация) родства человека с млекопитающими животными; взаимосвязи человека и окружающей среды; зависимости здоровья человека от состояния окружающей среды; необходимости защиты окружающей среды; овладение методами биологической науки: наблюдение и описание биологических объектов и процессов; постановка биологических экспериментов и объяснение их результатов.

Регулятивные: умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции).

Коммуникативные: формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, понимание особенностей гендерной социализации в подростковом возрасте, общественно полезной, учебно-исследовательской, творческой и дру­гих видов деятельности.

Технологии: Здоровьесбережения, проблем­ного, раз­вивающего обучения, групповой деятельно­сти

Приемы: анализ, синтез, умозаключение, перевод информации с одного вида в другой, обобщение.

Ход урока

Задачи

Убедить учащихся в том, что все проявления жизнедеятельности клетки связаны с химически­ми превращениями веществ.

Сформировать знания о сущности метаболизма — как совокупности реакции обмена веществ в клетке.

Четко показать две стороны метаболизма: ана­болизм и катаболизм.

Углубить понятие анаболизма (пластического обмена) путем изучения реализации наследствен­ной информации в процессе биосинтеза белка.

Развить и конкретизировать знания о генетиче­ском коде, способе передачи информации с ДНК на и-РНК, роли т-РНК в сборке аминокислот в молекулы белка

Основные положения

Наиважнейшей функцией процесса обмена веществ является поддержание постоянства внутренней среды клеток и организма (гомеостаз) в непрерывно меняющихся условиях существования.

Метаболизм складывается из двух связанных процессов — ассимиляции и диссимиляции.

3. В клетке процессы метаболизма связаны различными мембранными структурами ци- топлазмы.

Проблемные области

Как реализуется наследственная информация в жизнедеятельности вирусов?

В чем заключается биологический смысл из­быточности генетического кода?

Каким образом реализуется наследственная информация о структуре и функциях небелковых молекул, синтезируемых в клетке?


 

Терминология


 

Метаболизм

Свокупность процессов обмена веществ и энер­гии в клетке и орга­низме.

Анаболизм

Физиолого-биохимические процессы, на­правленные на усвое­ние клеткой пищевых веществ, в ходе кото­рых создается ее тело

Трансляция

Перевод информации из последовательности кодонов и-РНК в по­следовательность ами­нокислот полипептидной цепи.

Транскрипция

Перевод наследствен­ной информации из последовательности кодонов ДНК в после­довательность кодонов и-РНК.

Осуществляется путем матричного синтеза и- РНК на одной из цепей ДНК.

Биосинтез белков

Биосинтез белков является важнейшим процессом анаболизма. Все признаки, свойства и функции клеток и организмов определяются в конечном итоге белками. Белки недолговечны, время их существования ограничено. В каждой клетке постоянно синтезируются тысячи различных белковых молекул. В начале 50-х гг. ХХ в. Ф. Крик сформулировал центральную догму молекулярной биологии: ДНК → РНК → белок. Согласно этой догме способность клетки синтезировать определенные белки закреплена наследственно, информация о последовательности аминокислот в белковой молекуле закодирована в виде последовательности нуклеотидов ДНК. Участок ДНК, несущий информацию о первичной структуре конкретного белка, называетсягеном. Гены не только хранят информацию о последовательности аминокислот в полипептидной цепочке, но и кодируют некоторые виды РНК: рРНК, входящие в состав рибосом, и тРНК, отвечающие за транспорт аминокислот. В процессе биосинтеза белка выделяют два основных этапа:транскрипция — синтез РНК на матрице ДНК (гена) — и трансляция — синтез полипептидной цепи.


 


 

Генетический код — система записи информации о последовательности аминокислот в полипептиде последовательностью нуклеотидов ДНК или РНК. В настоящее время эта система записи считается расшифрованной.

Свойства генетического кода:

триплетность: каждая аминокислота кодируется сочетанием из трех нуклеотидов (триплетом, кодоном);

однозначность (специфичность): триплет соответствует только одной аминокислоте;

вырожденность (избыточность): аминокислоты могут кодироваться несколькими (до шести) кодонами;

универсальность: система кодирования аминокислот одинакова у всех организмов Земли;

неперекрываемость: последовательность нуклеотидов имеет рамку считывания по 3 нуклеотида, один и тот же нуклеотид не может быть в составе двух триплетов;

из 64 кодовых триплетов 61 — кодирующие, кодируют аминокислоты, а 3 — бессмысленные (в РНК — УАА, УГА, УАГ), не кодируют аминокислоты. Они называютсякодонами-терминаторами, поскольку блокируют синтез полипептида во время трансляции. Кроме того, есть кодон-инициатор (в РНК — АУГ), с которого трансляция начинается.

Таблица генетического кода

Первое
основание

Второе основание

Третье
основание

У(А)

Ц(Г)

А(Т)

Г(Ц)

 

У(А)

Фен
Фен
Лей
Лей

Сер
Сер
Сер
Сер

Тир
Тир

Цис
Цис

Три

У(А)
Ц(Г)
А(Т)
Г(Ц)

Ц(Г)

Лей
Лей
Лей
Лей

Про
Про
Про
Про

Гис
Гис
Глн
Глн

Арг
Арг
Арг
Арг

У(А)
Ц(Г)
А(Т)
Г(Ц)

А(Т)

Иле
Иле
Иле
Мет

Тре
Тре
Тре
Тре

Асн
Асн
Лиз
Лиз

Сер
Сер
Арг
Арг

У(А)
Ц(Г)
А(Т)
Г(Ц)

Г(Ц)

Вал
Вал
Вал
Вал

Ала
Ала
Ала
Ала

Асп
Асп
Глу
Глу

Гли
Гли
Гли
Гли

У(А)
Ц(Г)
А(Т)
Г(Ц)

Первый нуклеотид в триплете — один из четырех левого вертикального ряда, второй — один из верхнего горизонтального ряда, третий — из правого вертикального.

Реакции матричного синтеза

Это особая категория химических реакций, происходящих в клетках живых организмов. Во время этих реакций происходит синтез полимерных молекул по плану, заложенному в структуре других полимерных молекул-матриц. На одной матрице может быть синтезировано неограниченное количество молекул-копий. К этой категории реакций относятся репликация, транскрипция, трансляция и обратная транскрипция.

Название реакции
матричного синтеза

Характеристика процесса

Основные компоненты

Репликация

Синтез ДНК на матрице ДНК

Дезоксирибонуклеозидтрифосфаты, ферменты

Транскрипция

Синтез РНК на матрице ДНК

Участок ДНК, рибонуклеозидтрифосфаты, ферменты

Трансляция

Синтез полипептида на матрице РНК

Рибосомы, иРНК, аминокислоты, тРНК, АТФ, ГТФ, ферменты

Обратная транскрипция

Синтез ДНК на матрице РНК

Дезоксирибонуклеозидтрифосфаты, ферменты

Строение гена эукариот

Ген — участок молекулы ДНК, кодирующий первичную последовательность аминокислот в полипептиде или последовательность нуклеотидов в молекулах транспортных и рибосомных РНК. ДНК одной хромосомы может содержать несколько тысяч генов, которые располагаются в линейном порядке. Место гена в определенном участке хромосомы называется локусом. Особенностями строения гена эукариот являются: 1) наличие достаточно большого количества регуляторных блоков, 2) мозаичность (чередование кодирующих участков с некодирующими).

Экзоны (Э) — участки гена, несущие информацию о строении полипептида.

Интроны(И) — участки гена, не несущие информацию о строении полипептида. Число экзонов и интронов различных генов разное; экзоны чередуются с интронами, общая длина последних может превышать длину экзонов в два и более раз. Перед первым экзоном и после последнего экзона находятся нуклеотидные последовательности, называемые соответственно лидерной (ЛП) и трейлерной последовательностью (ТП). Лидерная и трейлерная последовательности, экзоны и интроны образуют единицу транскрипции.

Промотор (П) — участок гена, к которому присоединяется фермент РНК-полимераза, представляет собой особое сочетание нуклеотидов. Перед единицей транскрипции, после нее, иногда в интронах находятся регуляторные элементы (РЭ), к которым относятся энхансеры и сайленсеры. Энхансеры ускоряют транскрипцию, сайленсеры тормозят ее.

Транскрипция у эукариот

Транскрипция — синтез РНК на матрице ДНК. Осуществляется ферментом РНК-полимеразой.

РНК-полимераза может присоединиться только к промотору, который находится на 3′-конце матричной цепи ДНК, и двигаться только от 3′- к 5′-концу этой матричной цепи ДНК. Синтез РНК происходит на одной из двух цепочек ДНК в соответствии с принципами комплементарности и антипараллельности. Строительным материалом и источником энергии для транскрипции являются рибонуклеозидтрифосфаты (АТФ, УТФ, ГТФ, ЦТФ).

В результате транскрипции образуется «незрелая» иРНК (про-иРНК), которая проходит стадию созревания или процессинга. Процессинг включает в себя: 1) КЭПирование 5′-конца, 2) полиаденилирование 3′-конца (присоединение нескольких десятков адениловых нуклеотидов), 3) сплайсинг (вырезание интронов и сшивание экзонов). В зрелой иРНК выделяют КЭП, транслируемую область (сшитые в одно целое экзоны), нетранслируемые области (НТО) и полиадениловый «хвост».

Транслируемая область начинается кодоном-инициатором, заканчивается кодонами-терминаторами. НТО содержат информацию, определяющую поведение РНК в клетке: срок «жизни», активность, локализацию.

Транскрипция и процессинг происходят в клеточном ядре. Зрелая иРНК приобретает определенную пространственную конформацию, окружается белками и в таком виде через ядерные поры транспортируется к рибосомам; иРНК эукариот, как правило, моноцистронны (кодируют только одну полипептидную цепь).

Трансляция

Трансляция — синтез полипептидной цепи на матрице иРНК.

Органоиды, обеспечивающие трансляцию, — рибосомы. У эукариот рибосомы находятся в некоторых органоидах — митохондриях и пластидах (70S-рибосомы), в свободном виде в цитоплазме (80S-рибосомы) и на мембранах эндоплазматической сети (80S-рибосомы). Таким образом, синтез белковых молекул может происходить в цитоплазме, на шероховатой эндоплазматической сети, в митохондриях и пластидах. В цитоплазме синтезируются белки для собственных нужд клетки; белки, синтезируемые на ЭПС, транспортируются по ее каналам в комплекс Гольджи и выводятся из клетки. В рибосоме выделяют малую и большую субъединицы. Малая субъединица рибосомы отвечает за генетические, декодирующие функции; большая — за биохимические, ферментативные.

В малой субъединице рибосомы расположен функциональный центр (ФЦР) с двумя участками —пептидильным (Р-участок) иаминоацильным (А-участок). В ФЦР может находиться шесть нуклеотидов иРНК, три — в пептидильном и три — в аминоацильном участках.

Двадцать видов аминокислот кодируются 61 кодоном, теоретически может быть 61 вид тРНК с соответствующими антикодонами. Но кодируемых аминокислот всего 20 видов, значит, у одной аминокислоты может быть несколько тРНК. Установлено существование нескольких тРНК, способных связываться с одним и тем же кодоном (последний нуклеотид в антикодоне тРНК не всегда важен), поэтому в клетке обнаружено всего около 40 различных тРНК.

 


 

Транскрипция и трансляция у прокариот

«Механизмы» сборки полинуклеотидных и полипептидных цепочек у прокариот и эукариот не различаются. Но в связи с тем, что гены прокариот не имеют экзонов и интронов (исключение — гены архебактерий), располагаются группами, и на эту группу генов приходится один промотор, появляются следующие особенности транскрипции и трансляции у прокариот.

В результате транскрипции образуется полицистронная иРНК, кодирующая несколько белков, совместно обеспечивающих определенную группу реакций.

иРНК имеет несколько центров инициации трансляции, терминации трансляции и НТО.

Не происходят КЭПирование, полиаденилирование и сплайсинг иРНК.

Трансляция начинается еще до завершения транскрипции; эти процессы не разделены во времени и пространстве, как это имеет место у эукариот.

Вопросы и задания для повторения

Какое значение имеет биологический синтез?

Дайте определение ассимиляции.

Что такое генетический код?

Сформулируйте основные свойства генети­ческого кода»

Где синтезируются рибонуклеиновые кислоты

Где происходит синтез белка?

Расскажите, как осуществляется синтез белка

Биосинтез белка.

 

 

 

 

 

БИОСИНТЕЗ БЕЛКА проще некуда.=) Генетический код.


 

 

 

 

 

 

Генетический код. Транскрипция

 

 

 

 


 

Синтез белка

 

 

 

Ресурсы

В. Б. ЗАХАРОВ, С. Г. МАМОНТОВ, Н. И. СОНИН, Е. Т. ЗАХАРОВА УЧЕБНИК «БИОЛОГИЯ» ДЛЯ ОБЩЕОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ (10-11класс) .

А. П. Плехов Биология с основами экологии. Серия «Учебники для вузов. Специальная литература» .

Книга для учителя Сивоглазов В.И., Сухова Т.С. Козлова Т. А. Биология: общие закономерности .

Школьный мир ИНФО http://www.shkolnymir.info/content/view/95/9

Природа мира

https://natworld.info/novosti/babochki-mogut-byt-starshe-cvetov-na-desjatki-millionov-let

FB.ru http://fb.ru/article/198783/hvostatyie-zemnovodnyie-samyie-yarkie-predstaviteli etogo-otryada

Биоуроки http://biouroki.ru/material/lab/2.html

Сайт YouTubehttps://www.youtube.com /

Хостинг презентаций

http://ppt4web.ru/nachalnaja-shkola/prezentacija-k-uroku-okruzhajushhego-mira-vo-klasse-chto-takoe-ehkonomika.html

в формате Microsoft Word (.doc / .docx)
Комментарии
Комментариев пока нет.