Зачёт по алгебре на тему «Теория вероятностей» (11 класс)

28
0
Материал опубликован 2 September 2016 в группе

ВАРИАНТ 1

1.В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Результат округлите до сотых.

2.В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.

3.В среднем из 1400 садовых насосов, поступивших в продажу, 7 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

4. Конкурс исполнителей проводится в 3 дня. Всего заявлено 50 выступлений — по одному от каждой страны. В первый день 34 выступления, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса?

5. В фирме такси в наличии 50 легковых автомобилей; 27 из них чёрные с жёлтыми надписями на бортах, остальные  — жёлтые с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями.

6. На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Германии будет выступать после группы из Франции и после группы из России? Результат округлите до сотых.

7. Какова вероятность того, что случайно выбранное натуральное число от 41 до 56 делится на 2?

8. В сборнике билетов по математике всего 20 билетов, в 11 из них встречается вопрос по логарифмам. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по логарифмам.

9. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути случайным, определите, с какой вероятностью паук придёт к выходу .

10. Чтобы поступить в институт на специальность «Переводчик», абитуриент должен набрать на ЕГЭ не менее 79 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на на специальность «Таможенное дело», нужно набрать не менее 79 баллов по каждому из трёх предметов — математика, русский язык и обществознание.

Вероятность того, что абитуриент Б. получит не менее 79 баллов по математике, равна 0,9, по русскому языку — 0,7, по иностранному языку — 0,8 и по обществознанию — 0,9.

Найдите вероятность того, что Б. сможет поступить на одну из двух упомянутых специальностей.

 

ВАРИАНТ 2

1. В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,3. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).

2. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что наступит исход РРР (все три раза выпадает решка).

3. Фабрика выпускает сумки. В среднем на 200 качественных сумок приходится четыре сумки со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

4. Конкурс исполнителей проводится в 3 дня. Всего заявлено 55 выступлений — по одному от каждой страны. В первый день 33 выступления, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса?

5. На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет меньше 4?

6. Биатлонист 9 раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые 3 раза попал в мишени, а последние шесть промахнулся. Результат округлите до сотых.

7. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 30 этих стекол, вторая – 70. Первая фабрика выпускает 4 бракованных стекол, а вторая – 1. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

8. В сборнике билетов по химии всего 25 билетов, в 6 из них встречается вопрос по углеводородам. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по углеводородам.

9. Чтобы поступить в институт на специальность «Переводчик», абитуриент должен набрать на ЕГЭ не менее 69 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на на специальность «Менеджмент», нужно набрать не менее 69 баллов по каждому из трёх предметов — математика, русский язык и обществознание.

Вероятность того, что абитуриент Т. получит не менее 69 баллов по математике, равна 0,6, по русскому языку — 0,6, по иностранному языку — 0,5 и по обществознанию — 0,6.

Найдите вероятность того, что Т. сможет поступить на одну из двух упомянутых специальностей.

10. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути случайным, определите, с какой вероятностью паук придёт к выходу .

ВАРИАНТ 3

1. В чемпионате по гимнастике участвуют 60 спортсменок: 14 из Венгрии, 25 из Румынии, остальные — из Болгарии. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Болгарии.

2. Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,97. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,02. Найдите вероятность того, что случайно выбранная из упаковки батарейка будет забракована.

3. Чтобы поступить в институт на специальность «Международные отношения», абитуриент должен набрать на ЕГЭ не менее 68 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на на специальность «Социология», нужно набрать не менее 68 баллов по каждому из трёх предметов — математика, русский язык и обществознание.

Вероятность того, что абитуриент В. получит не менее 68 баллов по математике, равна 0,7, по русскому языку — 0,6, по иностранному языку — 0,6 и по обществознанию — 0,7.

Найдите вероятность того, что В. сможет поступить на одну из двух упомянутых специальностей.

4. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути случайным, определите, с какой вероятностью паук придёт к выходу .

5. Какова вероятность того, что случайно выбранное натуральное число от 52 до 67 делится на 4?

6. На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,1. Вероятность того, что это вопрос на тему «Тригонометрия», равна 0,35. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

7. Сева, Слава, Аня, Андрей, Миша, Игорь, Надя и Карина бросили жребий — кому начинать игру. Найдите вероятность того, что начинать игру должен будет мальчик.

8. На семинар приехали 5 ученых из Испании, 4 из Дании и 7 из Голландии. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что двенадцатым окажется доклад ученого из Дании.

9. В сборнике билетов по философии всего 25 билетов, в 8 из них встречается вопрос по Пифагору. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по Пифагору.

10. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,09 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

 

ВАРИАНТ 4

1. На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из США будет выступать после группы из Вьетнама и после группы из Швеции? Результат округлите до сотых.

2. Вероятность того, что на тесте по истории учащийся Т. верно решит больше 8 задач, равна 0,58. Вероятность того, что Т. верно решит больше 7 задач, равна 0,64. Найдите вероятность того, что Т. верно решит ровно 8 задач.

3. Фабрика выпускает сумки. В среднем на 60 качественных сумок приходится шесть сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

4. В кармане у Саши было четыре конфеты — «Мишка», «Взлётная», «Белочка» и «Грильяж», а так же ключи от квартиры. Вынимая ключи, Саша случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета «Взлётная».

5. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может. На каждом разветвлении паук выбирает путь, по которому ещё не полз. Считая выбор дальнейшего пути случайным, определите, с какой вероятностью паук придёт к выходу .

6. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 15 очков. Результат округлите до сотых.

7. Биатлонист 10 раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,7. Найдите вероятность того, что биатлонист первые 7 раз попал в мишени, а последние три промахнулся. Результат округлите до сотых.

8. На семинар приехали 5 ученых из Швейцарии, 7 из Польши и 2 из Великобритании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что тринадцатым окажется доклад ученого из Польши.

9. Чтобы поступить в институт на специальность «Международное право», абитуриент должен набрать на ЕГЭ не менее 68 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на на специальность «Социология», нужно набрать не менее 68 баллов по каждому из трёх предметов — математика, русский язык и обществознание.

Вероятность того, что абитуриент Б. получит не менее 68 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,5 и по обществознанию — 0,7.

Найдите вероятность того, что Б. сможет поступить на одну из двух упомянутых специальностей.

10. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,25. Вероятность того, что кофе закончится в обоих автоматах, равна 0,14. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.


Зачет по теме "Теория вероятностей", 11 класс
DOCX / 44.77 Кб

Комментарии
Комментариев пока нет.