Адаптированная рабочая программа по геометрии (надомное обучение)
АДАПТИРОВАННАЯ РАБОЧАЯ ПРОГРАММА (надомное обучение) | ||||||
По | геометрии | | ||||
| | | ||||
| Уровень образования (класс) | |||||
| основное общее образование 7класс (ОВЗ) | | ||||
| (начальное общее, основное общее образование с указанием классов) | | ||||
| | | ||||
| Количество часов | 34 | | |||
| | | | | ||
| Учитель | | | |||
| | | | | ||
| Программа разработана в соответствии и на основе | | ||||
| Федерального компонента государственного образовательного | | ||||
| стандарта начального общего, | | ||||
| основного общего и среднего (полного) общего образования | | ||||
| (приказ Министерства образования и науки Российской Федерации | | ||||
| от 17 декабря 2010 №1897) | | ||||
| авторской программы общеобразовательных учреждений | | ||||
| «Геометрия 7-9 классы», | | ||||
| автор Л.С. Атанасян | | ||||
| Москва, «Просвещение», 2010г. | |
1.ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Практическая потребность и необходимость разработки адаптированной рабочей программы по геометрии для обучающихся с ОВЗ заключается в том, что она позволит в лучшей степени обеспечить социализацию детей этой категории, где каждый ребенок сможет развиваться в своем собственном режиме и получит доступное качественное образование с учетом индивидуальных потребностей и собственных возможностей в условиях инклюзивного образования.
Общие цели изучения учебного курса «Геометрия» заключаются, прежде всего в том, что на уроках геометрии обучающийся учится проводить доказательные рассуждения, строить логические умозаключения, доказывать истинные утверждения и строить контрпримеры к ложным, проводить рассуждения «от противного», отличать свойства от признаков, формулировать обратные утверждения. В обучении умению рассуждать состоит важное воспитательное значение изучения геометрии, присущее именно отечественной математической школе.
Второй целью изучения геометрии является использование её как инструмента при решении как математических, так и практических задач, встречающихся в реальной жизни. Этому соответствует вторая, вычислительная линия в изучении геометрии в школе. Для этого учителю рекомендуется подбирать задачи практического характера для рассматриваемых тем, учить обучающихся строить математические модели реальных жизненных ситуаций, проводить вычисления и оценивать адекватность полученного результата. Крайне важно подчёркивать связи геометрии с другими предметами, мотивировать использовать определения геометрических фигур и понятий, демонстрировать применение полученных умений в физике и технике.
Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека.
Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.
Приоритетными целями обучения математике в 7 классе ОВЗ являются:
формирование центральных математических понятий (число, величина, геометрическая фигура, переменная, вероятность, функция), обеспечивающих преемственность и перспективность математического образования обучающихся с ЗПР;
подведение обучающихся с ЗПР на доступном для них уровне к осознанию взаимосвязи математики и окружающего мира, понимание математики как части общей культуры человечества;
развитие интеллектуальных и творческих способностей обучающихся с ЗПР, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению математики;
формирование функциональной математической грамотности: умения распознавать проявления математических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, формулировать их на языке математики и создавать математические модели, применять освоенный математический аппарат для решения практико-ориентированных задач, интерпретировать и оценивать полученные результаты.
Достижение этих целей обеспечивается решением следующих коррекционно – развивающих задач:
формировать у обучающихся с ЗПР навыки учебно-познавательной деятельности: планирование работы, поиск рациональных путей ее выполнения, осуществления самоконтроля;
способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, пространственных представлений, способности к преодолению трудностей;
формировать ключевые компетенции учащихся в рамках предметной области «Математика»;
развивать понятийное мышление обучающихся с ЗПР;
осуществлять коррекцию познавательных процессов обучающихся с ЗПР, необходимых для освоения программного материала по учебному предмету;
предусматривать возможность компенсации образовательных дефицитов в освоении предшествующего программного материала у обучающихся с ЗПР и недостатков в их математическом развитии;
сформировать устойчивый интерес учащихся к предмету;
выявлять и развивать геометрические и творческие способности.
Программа отражает содержание обучения предмету «Математика (ОВЗ)» с учетом особых образовательных потребностей обучающихся с ЗПР. Овладение учебным предметом «Математика» представляет определенную сложность для учащихся с ЗПР. У обучающихся с ЗПР наиболее выражены отставания в развитии словесно-логических форм мышления, поэтому абстрактные и отвлеченные категории им труднодоступны. В тоже время при специальном обучении обучающиеся могут выполнять задания по алгоритму. Они восприимчивы к помощи, могут выполнить перенос на аналогичное задание усвоенного способа решения. Снижение развития мыслительных операций и замедленное становление логических действий приводят к недостаточной осмысленности совершаемых учебных действий. У обучающихся затруднены счетные вычисления, производимые в уме. В письменных вычислениях они могут пропускать один из промежуточных шагов.
При изучении геометрического материала обучающиеся с ЗПР сталкиваются с трудностью делать логические выводы, строить последовательные рассуждения. Непрочные знания основных теорем геометрии приводит к ошибкам в решении геометрических задач. Обучающиеся могут подменить формулу, неправильно применить теорему. К серьезным ошибкам в решении задач приводят недостаточно развитые пространственные представления. Им сложно выполнить чертеж к условию, в письменных работах они не могут привести объяснение к чертежу.
Точность запоминания и воспроизведения учебного материала снижены по причине слабости мнестической деятельности, сужения объема памяти. Обучающимся с ЗПР требуется больше времени на закрепление материала, актуализация знаний по опоре при воспроизведении.
Для преодоления трудностей в изучении учебного предмета «Математика (ОВЗ)» необходима адаптация объема и характера учебного материала к познавательным возможностям учащихся с ЗПР. Следует учебный материал преподносить небольшими порциями, усложняя его постепенно, изыскивать способы адаптации трудных заданий, некоторые темы давать как ознакомительные; исключать отдельные трудные доказательства; теоретический материал рекомендуется изучать в процессе практической деятельности по решению задач. Органическое единство практической и умственной деятельности учащихся на уроках математики способствуют прочному и сознательному усвоению базисных математических знаний и умений.
Особенности отбора и адаптации учебного материала по математике
Обучение учебному предмету «Математика» строится на создании оптимальных условий для усвоения программного материала обучающимися с ЗПР. Большое внимание уделяется отбору учебного материала в соответствии с принципом доступности при сохранении общего базового уровня, который должен по содержанию и объему быть адаптированным для обучающихся с ЗПР в соответствии с их особыми образовательными потребностями. Следует облегчить овладение материалом обучающимися с ЗПР посредством его детального объяснения с систематическим повтором, многократной тренировки в применении знаний, используя приемы актуализации (визуальная опора, памятка).
Примерная программа предусматривает внесение некоторых изменений: уменьшение объема теоретических сведений, вынесение отдельных тем или целых разделов в материалы для обзорного, ознакомительного изучения.
Адаптированная рабочая программа составлена на основе ФГОС ООО второго поколения и полностью отражает базовый уровень подготовки школьников. Программа спланирована в соответствии с основными положениями системно – деятельностного подхода в обучении геометрии, конкретизирует содержание тем Стандарта и дает распределение учебных часов по разделам курса.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА ГЕОМЕТРИИ
В 7—9 КЛАССАХ
Личностные, метапредметные и предметные результаты освоения
учебного предмета «Геометрия»
Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:
личностные:
1) формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
2) формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики
3) формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
4) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
5) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факт;
6) креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
7) умение контролировать процесс и результат учебной математической деятельности;
8) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
Личностные результаты освоения программы учебного предмета «Математика» характеризуются:
Патриотическое воспитание:
проявлением интереса к прошлому и настоящему российской математики, ценностным отношением к достижениям российских математиков и российской математической школы, к использованию этих достижений в других науках и прикладных сферах.
Гражданское и духовно-нравственное воспитание:
готовностью к выполнению обязанностей гражданина и реализации его прав, представлением о математических основах функционирования различных структур, явлений, процедур гражданского общества (выборы, опросы и пр.); готовностью к обсуждению этических проблем, связанных с практическим применением достижений науки, осознанием важности моральноэтических принципов в деятельности учёного.
Трудовое воспитание:
установкой на активное участие в решении практических задач математической направленности, осознанием важности математического образования на протяжении всей жизни для успешной профессиональной деятельности и развитием необходимых умений; осознанным выбором и построением индивидуальной траектории образования и жизненных планов с учётом личных интересов и общественных потребностей.
Эстетическое воспитание:
способностью к эмоциональному и эстетическому восприятию математических объектов, задач, решений, рассуждений; умению видеть математические закономерности в искусстве.
Ценности научного познания:
ориентацией в деятельности на современную систему научных представлений об основных закономерностях развития человека, природы и общества, пониманием математической науки как сферы человеческой деятельности, этапов её развития и значимости для развития цивилизации; овладением языком математики и математической культурой как средством познания мира; овладением простейшими навыками исследовательской деятельности.
Физическое воспитание, формирование культуры здоровья и эмоционального благополучия:
готовностью применять математические знания в интересах своего здоровья, ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и отдыха, регулярная физическая активность); сформированностью навыка рефлексии, признанием своего права на ошибку и такого же права другого человека.
Экологическое воспитание:
ориентацией на применение математических знаний для решения задач в области сохранности окружающей среды, планирования поступков и оценки их возможных последствий для окружающей среды; осознанием глобального характера экологических проблем и путей их решения.
Личностные результаты, обеспечивающие адаптацию обучающегося к изменяющимся условиям социальной и природной среды:
готовностью к действиям в условиях неопределённости, повышению уровня своей компетентности через практическую деятельность, в том числе умение учиться у других людей, приобретать в совместной деятельности новые знания, навыки и компетенции из опыта других;
необходимостью в формировании новых знаний, в том числе формулировать идеи, понятия, гипотезы об объектах и явлениях, в том числе ранее не известных, осознавать дефициты собственных знаний и компетентностей, планировать своё развитие; способностью осознавать стрессовую ситуацию, воспринимать стрессовую ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и действия, формулировать и оценивать риски и последствия, формировать опыт.
метапредметные:
1) умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач.
2) умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы;
3) умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения,
4) осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
5) умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
6) умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
7) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов, слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
8) сформированность учебной и общепользовательской компетентности в области использования информаuионно-коммуникационных технологий (ИКТ-компетентности);
9) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
10) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
11) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
12) умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
13) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
|4) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
15) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
16) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
17) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.
предмеmные:
1) умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
2) владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их извлечения, об особенностях выводов и прогнозов, носящих вероятностный характер;
3) умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
4) умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;
5) умение решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;
6) овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
7) овладение основными способами представления анализа статистических данных; умение решать задачи на нахождение частоты и вероятности случайных событий,
8) умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
НАГЛЯДНАЯ ГЕОМЕТРИЯ
Выпускник научится:
1) распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
2) распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
3) определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
4) вычислять объём прямоугольного параллелепипеда.
Выпускник получит возможность:
5) вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
6) углубить и развить представления о пространственных геометрических фигурах;
7) применять понятие развёртки для выполнения практических расчётов.
ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ
Выпускник научится:
1) пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
2) распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
3) находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
4) оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
5) решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
6) решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
7) решать простейшие планиметрические задачи в пространстве.
Выпускник получит возможность:
8) овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
10) овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство
и исследование;
11) научиться решать задачи на построение методом геометрического места точек и методом подобия;
12) приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
13) приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости»,
ИЗМЕРЕНИЕ ГЕОМЕТРИЧЕСКИХ ВЕЛИЧИН
Выпускник научится:
1) использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
2) вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
3) вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
4) вычислять длину окружности, длину дуги окружности;
5) решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
6) решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Выпускник получит возможность:
7) вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
8) вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.
СОДЕРЖАНИЕ КУРСА
7 класс ОВЗ
Начальные понятия геометрии. Точка, прямая, отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла. Ломаная, многоугольник. Параллельность и перпендикулярность прямых.
Симметричные фигуры. Основные свойства осевой симметрии1. Примеры симметрии в окружающем мире.
Основные построения с помощью циркуля и линейки.
Треугольник. Высота, медиана, биссектриса, их свойства. Равнобедренный и равносторонний треугольники. Неравенство треугольника.
Свойства и признаки равнобедренного треугольника. Признаки равенства треугольников.
Свойства и признаки параллельных прямых. Сумма углов треугольника. Внешние углы треугольника.
Прямоугольный треугольник. Свойство медианы прямоугольного треугольника, проведённой к гипотенузе. Признаки равенства прямоугольных треугольников. Прямоугольный треугольник с углом в 30о.
Неравенства в геометрии: неравенство треугольника, неравенство о длине ломаной, теорема о большем угле и большей стороне треугольника. Перпендикуляр и наклонная.
Геометрическое место точек. Биссектриса угла и серединный перпендикуляр к отрезку как геометрические места точек.
Окружность и круг, хорда и диаметр, их свойства. Взаимное расположение окружности и прямой. Касательная и секущая к окружности. Окружность, вписанная в угол. Вписанная и описанная окружности треугольника.
ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
7 КЛАСС ОВЗ | |||||||||
Раздел | Кол-во часов | Темы | Кол-во часов | Основные виды деятельности обучающихся(на уровне УУД) | Основные направления воспитательной деятельности | ||||
Геометрические фигуры | 5 | Коррекционные задачи: формировать у обучающихся с ЗПР навыки учебно-познавательной деятельности: планирование работы, поиск рациональных путей ее выполнения, осуществления самоконтроля; способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, пространственных представлений, способности к преодолению трудностей. | |||||||
| | Начальные геометрические сведения | 5 | Объяснять, что такое отрезок, луч, угол, какие фигуры называются равными, как сравниваются и измеряются отрезки и углы, что такое градус и градусная мера угла, какой угол называется прямым, тупым, острым, развёрнутым, что такое середина отрезка и биссектриса угла, какие углы называются смежными и какие вертикальными; формулировать и обосновывать утверждения о свойствах смежных и вертикальных углов; объяснять, какие прямые называются перпендикулярными; формулировать и обосновывать утверждение о свойстве двух прямых, перпендикулярных к третьей; изображать и распознавать указанные простейшие фигуры на чертежах; решать задачи, связанные с этими простейшими фигурами | | ||||
Прямая и отрезок. Луч и угол | 1 | Патриотическое воспитание. | |||||||
Сравнение отрезков и углов | 1 | Ценности научного познания. | |||||||
Измерение отрезков. Измерение углов | 1 | Гражданское и духовно-нравственное воспитание. | |||||||
Перпендикулярные прямые | 1 | Эстетическое воспитание. | |||||||
Контрольная работа №1 | 1 | | |||||||
| | | |||||||
Геометрические фигуры. Элементы логики. | 12 | Коррекционные задачи: предусматривать возможность компенсации образовательных дефицитов в освоении предшествующего программного материала у обучающихся с ЗПР и недостатков в их математическом развитии; сформировать устойчивый интерес учащихся к предмету; выявлять и развивать математические и творческие способности. | |||||||
| | Треугольники | 12 | Объяснять, какая фигура называется треугольником, что такое вершины, стороны, углы и периметр треугольника, какой треугольник называется равнобедренным и какой равносторонним, какие треугольники называются равными; изображать и распознавать на чертежах треугольники и их элементы; формулировать и доказывать теоремы о признаках равенства треугольников; объяснять, что называется перпендикуляром, проведённым из данной точки к данной прямой; формулировать и доказывать теорему о перпендикуляре к прямой; объяснять, какие отрезки называются медианой, биссектрисой и высотой треугольника; формулировать и доказывать теоремы о свойствах равнобедренного треугольника; решать задачи, связанные с признаками равенства треугольников и свойствами равнобедренного треугольника; формулировать определение окружности; объяснять, что такое центр, радиус, хорда и диаметр окружности; решать простейшие задачи на построение (построение угла, равного данному, построение биссектрисы угла, построение перпендикулярных прямых, построение середины отрезка) и более сложные задачи, использующие указанные простейшие; сопоставлять полученный результат с условием задачи; анализировать возможные случаи | | ||||
Первый признак равенства треугольников. | 3 | Гражданское и духовно-нравственное воспитание. | |||||||
Медианы, биссектрисы и высоты треугольника. | 3 | Экологическое воспитание. | |||||||
Второй и третий признаки равенства треугольников. | 3 | Трудовое воспитание. | |||||||
Решение задач. | 2 | Трудовое воспитание. | |||||||
Контрольная работа №2 | 1 | | |||||||
| | | |||||||
Геометрические фигуры. Элементы логики | 6 | Коррекционные задачи: формировать ключевые компетенции учащихся в рамках предметной области «Математика. Геометрия»; развивать понятийное мышления обучающихся с ЗПР; осуществлять коррекцию познавательных процессов обучающихся с ЗПР, необходимых для освоения программного материала по учебному предмету. | |||||||
| | Параллельные прямые | 6 | Формулировать определение параллельных прямых; объяснять с помощью рисунка, какие углы, образованные при пересечении двух прямых секущей, называются накрест лежащими, какие односторонними и какие соответственными; формулировать и доказывать теоремы, выражающие признаки параллельности двух прямых; объяснять, что такое аксиомы геометрии и какие аксиомы уже использовались ранее; формулировать аксиому параллельных прямых и выводить следствия из неё; формулировать и доказывать теоремы о свойствах параллельных прямых, обратные теоремам о признаках параллельности, связанных с накрест лежащими, соответственными и односторонними углами, в связи с этим объяснять, что такое условие и заключение теоремы, какая теорема называется обратной по отношению к данной теореме; объяснять, в чём заключается метод доказательства от противного: формулировать и доказывать теоремы об углах с соответственно параллельными и перпендикулярными сторонами; приводить примеры использования этого метода; решать задачи на вычисление, доказательство и построение, связанные с параллельными прямыми | | ||||
Признаки параллельности двух Прямых. | 2 | Патриотическое воспитание. | |||||||
Аксиома параллельных прямых. | 2 | Ценности научного познания. | |||||||
Решение задач. | 1 | Эстетическое воспитание. | |||||||
Контрольная работа №3. | 1 | | |||||||
Геометрические фигуры. Элементы логики | 16 | Коррекционные задачи: предусматривать возможность компенсации образовательных дефицитов в освоении предшествующего программного материала у обучающихся с ЗПР и недостатков в их математическом и геометрическом развитии; сформировать устойчивый интерес учащихся к предмету; выявлять и развивать геометрические и творческие способности. | |||||||
| | Соотношения между сторонами и углами треугольника | 11 | Формулировать и доказывать теорему о сумме углов треугольника и её следствие о внешнем угле треугольника, проводить классификацию треугольников по углам; формулировать и доказывать теорему о соотношениях между сторонами и углами треугольника (прямое и обратное утверждения) и следствия из неё, теорему о неравенстве треугольника; формулировать и доказывать теоремы о свойствах прямоугольных треугольников (прямоугольный треугольник с углом 30°, признаки равенства прямоугольных треугольников); формулировать определения расстояния от точки до прямой, расстояния между параллельными прямыми; решать задачи на вычисления, доказательство и построение, связанные с соотношениями между сторонами и углами треугольника и расстоянием между параллельными прямыми, при необходимости проводить по ходу решения дополнительные построения, сопоставлять полученный результат с условием задачи, в задачах на построение исследовать возможные случаи | | ||||
Сумма углов треугольника | 1 | Гражданское и духовно-нравственное воспитание. | |||||||
Соотношения между сторонами и углами треугольника | 3 | Экологическое воспитание. | |||||||
Контрольная работа №4 | 1 | | |||||||
Прямоугольные треугольники | 3 | Эстетическое воспитание. | |||||||
Решение задач | 2 | Трудовое воспитание. | |||||||
Контрольная работа №5 | 1 | | |||||||
| | | |||||||
| | | | | |||||
| | | | |