Фотосинтез — процесс, при котором в клетках, содержащих хлорофилл, под действием энергии света образуются органические вещества из неорганических. При фотосинтезе растение поглощает углекислый газ и воду, синтезирует органические вещества и выделяет кислород, как побочный продукт фотосинтеза.
Чтобы понять, что происходит в растении при фотосинтезе, изучим подробнее хлоропласты.
Хлоропласты являются одним из видов пластид. Хлоропласты имеют зеленый цвет за счет преобладающего в них пигмента хлорофилла. Основная их функция — фотосинтез. Количество данных органоидов в клетке варьирует. У некоторых водорослей в клетках содержится одни большой хлоропласт, часто причудливой формы. У высших растений их множество, особенно в мезофильной ткани листьев, где количество может достигать сотни штук на клетку.
У высших растений размер органоида около 5 мкм, форма округлая слегка вытянутая в одном направлении.
Для хлоропластов характерна сложная система внутренних мембран, позволяющая пространственно организовать фотосинтетический аппарат, упорядочить и разделить реакции фотосинтеза, несовместимые между собой, и их продукты. Мембраны образуют тилакоиды, которые, в свою очередь, собираются в «стопки» — граны. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом.
Внутреннее пространство хлоропласта между гранами заполняет строма — гидрофильный слабоструктурированный матрикс. В строме содержатся необходимые для реакций синтеза сахаров ферменты, а также рибосомы, кольцевая молекула ДНК, крахмальные зёрна.
У фотосинтезирующих организмов можно выделить три основные группы пигментов:
Хлорофиллы:
хлорофилл а — у большинства фотосинтезирующих организмов,
хлорофилл b — у высших растений и зелёных водорослей,
хлорофилл c — у бурых водорослей,
хлорофилл d — у некоторых красных водорослей.
Хлорофиллы выполняют функции поглощения, преобразования и транспорта энергии света. Лучше всего хлорофиллы поглощают свет в синей (430—460 нм) и красной (650—700 нм) областях спектра.
Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.
В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии - сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.
Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:
Синтезируют органические вещества, являющиеся пищей для всего живого на планете
Преобразуют энергию света в энергию химических связей, создают органическую массу
Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение
Процесс фотосинтеза можно разделить на две фазы:
1. Световая.
2. Темновая.
В ходе световой фазы фотосинтеза образуется энергия в виде АТФ и универсальный донор атома водорода — восстановитель НАДФН (НАДФ·Н2). Эти вещества необходимы для протекания темновой фазы. Также образуется побочный продукт — кислород. Световая фаза может проходить только на мембранах тилакоидов и на свету.
Световая фаза фотосинтеза включает в себя фотохимические и фотофизические процессы, и может быть поделена на три этапа:
Фаза поглощения — энергия света улавливается при помощи светособирающих комплексов, переходит в энергию электронного возбуждения пигментов, передаётся в реакционный центр фотосистем I и II.
Фаза реакционных центров — энергия электронного возбуждения пигментов светособирающих комплексов используется для активации реакционных центров фотосистем. Именно в этом процессе происходит преобразование физической формы энергии в химическую.
Фаза электрон-транспортной цепи — электроны переносятся по цепи переносчиков, образуются АТФ, НАДФН, O2. Часть энергии теряется. На некоторых участках электрон-транспортной цепи перенос электрона сопряжён с переносом протона.
Список литературы:
Физиология растений: учебник для студ. вузов / Н.Д. Алехина, Ю.В. Балнокин.
С.С. Медведев- Физиология растений.