СКИДКА 40% НА ДЕЙСТВИТЕЛЬНО ИНТЕРЕСНЫЕ И ПОЛЕЗНЫЕ ВЕБИНАРЫ И КУРСЫ ОТ УРОК.РФ – АКЦИЯ ДЕЙСТВУЕТ ДО 31 ДЕКАБРЯ 2019
12+  Свидетельство СМИ ЭЛ № ФС 77 - 70917
Лицензия на образовательную деятельность №0001058
Пользовательское соглашение     Контактная и правовая информация
 
Педагогическое сообщество
УРОК.РФУРОК
Материал опубликовала
Яковлева Марина Александровна56
Люблю свою семью, дочь и мужа, люблю свою работу. стараюсь ко всему относиться легко и с юмором. Жизнь прекрасна!
Россия, Ленинградская обл., Тосно

Приёмы достижения метапредметных результатов при формировании понятия «Золотое сечение»

План урока

Учитель

Предмет: математика

Класс: 6

Название урока: ЗОЛОТОЕ СЕЧЕНИЕ - гармоническая пропорция

Тема урока: ЗОЛОТОЕ СЕЧЕНИЕ

Тип урока: ознакомление с новым материалом

Вид урока: комбинированный

Базовый учебник : Виленкин В. И0 Жохов, А. С. Чесноков, С. И. Шварцбурд, Математика 6 класс, Москва, Мнемозина, 2008 г

Цели в блоках достижения:

Личностных результатов: самопознание (выявление субъектного опыта)

- формирование коммуникативной компетентности (диалог с учителем);

Метапредметных результатов

умение осознанно использовать речевые средства в соответствии с задачей коммуникации (ответы на вопросы, работа по схеме);

умение оценивать правильность выполнения учебной задачи;

Предметных результатов:

развитие умений применять изученные понятия, результаты, методы для решения задач практического характера;

Основные цели:

    формировать способность к построению нового понятия и свойства, используя имеющиеся знания; умение использовать разные способы для определения

    познакомить с метапредметными связями



Задачи: формирование познавательных и логических УУД: развивать умение работать с математическим текстом, владение базовым понятийным аппаратом; закрепить овладение практически значимыми математическими умениями и навыками, их применение к решению математических задач, предполагающее умение: выполнять устные и письменные вычисления; проводить практические расчеты;

Познавательные УУД: составление схемы определения понятия, подведение под понятие;

составление схемы поиска решения задачи; постановка и решение проблемы при составлении задачи

Регулятивные УУД : Выбор и принятие целей, составление плана, самоконтроль, самооценка, соотнесение своих знаний с той учебной информацией, которую нужно усвоить

Коммуникативные УУД: Взаимоконтроль, взаимопроверка, распределение обязанностей в группе, умение слушать, выступать,

Личностные УУД : Рефлексия собственной деятельности; оценивание, самопознание и самоопределение



Основные цели урока: образовательная, развивающая, воспитательная.

Урок в форме небольших рассказов учащихся, которые разбиваются на группы, каждой группе выдается необходимый раздаточный материал, включающий в себя следующие темы:

    ЗОЛОТОЕ СЕЧЕНИЕ - гармоническая пропорция

    Из истории

    Пропорции человеческого тела

    Золотое сечение в архитектуре

    Золотое сечение в живописи

    Золотое сечение в работе сердца

    Золотое сечение в музыке

    Золотое сечение в исследовании журналистских текстов

    Ряд Фибоначчи

    Раковина (спираль)

    Золотое сечение в растительном и животном мире

Некоторое время учащиеся изучают свой материал, делают необходимые измерения, выводы. Затем каждая группа представляет свою тему остальным. Учитель помогает показом слайдов, распечаток.

Использование компьютерных технологий, раздаточный наглядный материал по каждой подтеме.

    Учитель начинает урок, затем предоставляет слово ученикам, по ходу урока ведется диалог по каждой теме, задаются вопросы по наглядному материалу.

Учитель: (Введение в тему, постановка и формулирование целей своей учебной деятельности)

    Золотое сечение

Есть вещи, которые нельзя объяснить. Вот вы подходите к пустой скамейке и садитесь на нее. Где вы сядете — посередине? Или, может быть, с самого края? Нет, скорее всего, не то и не другое. Вы сядете так, что отношение одной части скамейки к другой, относительно вашего тела, будет равно примерно 1,62. Простая вещь, абсолютно инстинктивная... Садясь на скамейку, вы произвели «золотое сечение». О золотом сечении знали еще в древнем Египте и Вавилоне, в Индии и Китае. Великий Пифагор создал тайную школу, где изучалась мистическая суть «золотого сечения». Евклид применил его, создавая свою геометрию, а Фидий — свои бессмертные скульптуры. Платон рассказывал, что Вселенная устроена согласно «золотому сечению». А Аристотель нашел соответствие «золотого сечения» этическому закону. Высшую гармонию «золотого сечения» будут проповедовать Леонардо да Винчи и Микеланджело, ведь красота и «золотое сечение» — это одно и то же. А христианские мистики будут рисовать на стенах своих монастырей пентаграммы «золотого сечения», спасаясь от Дьявола. При этом ученые — от Пачоли до Эйнштейна — будут искать, но так и не найдут его точного значения. Бесконечный ряд после запятой — 1,6180339887... Странная, загадочная, необъяснимая вещь: эта божественная пропорция мистическим образом сопутствует всему живому. Неживая природа не знает, что такое «золотое сечение». Но вы непременно увидите эту пропорцию и в изгибах морских раковин, и в форме цветов, и в облике жуков, и в красивом человеческом теле. Все живое и все красивое — все подчиняется божественному закону, имя которому — «золотое сечение». Так что же такое «золотое сечение»?.. Что это за идеальное, божественное сочетание? Может быть, это закон красоты? Или все-таки он — мистическая тайна? Научный феномен или этический принцип? Ответ неизвестен до сих пор. Точнее — нет, известен. «Золотое сечение» — это и то, и другое, и третье. Только не по отдельности, а одновременно... И в этом его подлинная загадка, его великая тайна.



После этого учащиеся работают в группах, изучают свой материал, делают необходимые измерения, выводы. Затем каждая группа представляет свою тему остальным. Учитель помогает показом слайдов, распечаток.

1 выступление

2. Иоганн Kеплер говорил, что геометрия владеет двумя сокровищами

-теоремой Пифагора и золотым сечением.

И если первое из этих двух сокровищ можно сравнить с мерой золота, то второе с драгоценным камнем.

Теорему Пифагора знает каждый школьник, а что такое золотое сечение - далеко не все.

Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения - высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

Примеры «золотого сечения»

Отрезав квадрат от прямоугольника, построенного по принципу золотого сечения, мы получаем новый, уменьшенный прямоугольник с тем же отношением сторон

В правильной пятиконечной звезде каждый отрезок делится пересекающим его отрезком в золотом сечении

Отношение диагонали правильного пятиугольника к стороне равно золотому сечению.

ЗОЛОТОЕ СЕЧЕНИЕ - гармоническая пропорция

В математике пропорцией называют равенство двух отношений: a : b = c : d.

Отрезок прямой АВ можно разделить точкой C на две части следующими способами:

на две равные части АВ : АC = АВ : ВC;

на две неравные части в любом отношении (такие части пропорции не образуют);

таким образом, когда АВ : АC = АC : ВC.

Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.



Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему

a : b = b : c или с : b = b : а.

Отрезки золотой пропорции выражаются бесконечной иррациональной дробью 0,618..., если c принять за единицу, a = 0,382. Числа 0.618 и 0.382 являются коэффициентами последовательности Фибоначчи. На этой пропорции базируются основные геометрические фигуры.

Прямоугольник с таким отношением сторон стали называть золотым прямоугольником. Он также обладает интересными свойствами. Если от него отрезать квадрат, то останется вновь золотой прямоугольник. Этот процесс можно продолжать до бесконечности. А если провести диагональ первого и второго прямоугольника, то точка их пересечения будет принадлежать всем получаемым золотым прямоугольникам.

Разумеется есть и золотой треугольник. Это равнобедренный треугольник, у которого отношение длины боковой стороны к длине основания равняется 1.618.

Есть и золотой кубоид- это прямоугольный параллелепипед с ребрами, имеющими длины 1.618, 1 и 0.618.

В звездчатом пятиугольнике каждая из пяти линий, составляющих эту фигуру, делит другую в отношении золотого сечения, а концы звезды являются золотыми треугольниками.



2 выступление



    Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Kорбюзье нашел, что в рельефе из храма фараонa Cети I в Абидосе и в рельефе, изображающем фараона Pамзеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

Греки были искусными геометрами. Даже арифметике обучали своих детей при помощи геометрических фигур. Kвадрат Пифагора и диагональ этого квадрата были основанием для построения динамических прямоугольников.

Платон ( 427...347 гг. до н.э.) также знал о золотом делении. Его диалог "Тимей" посвящен математическим и эстетическим воззрениям школы Пифагора и, в частности, вопросам золотого деления. В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

В дошедшей до нас античной литературе золотое деление впервые упоминается в "Началах" Евклида. Во 2-й книге "Начал" дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др. В средневековой Европе с золотым делением познакомились по арабским переводам "Начал" Евклида. Cекреты золотого деления ревностно оберегались, хранились в строгой тайне. Они были известны только посвященным.

В эпоху Возрождения усиливается интерес к золотому делению среди ученых и художников в связи с его применением как в геометрии, так и в искусстве, особенно в архитектуре. Леонардо да Винчи, художник и ученый, видел, что у итальянских художников эмпирический опыт большой, а знаний мало. Он задумал и начал писать книгу по геометрии, но в это время появилась книга монаха Луки Пачоли, и Леонардо оставил свою затею. По мнению современников и историков науки, Лука Пачоли был настоящим светилом, величайшим математиком Италии в период между Фибоначчи и Галилеем.

Лука Пачоли прекрасно понимал значение науки для искусства. В 1496 г по приглашению герцога Моро он приезжает в Милан, где читает лекции по математике. В Милане при дворе Моро в то время работал и Леонардо да Винчи. В 1509 г. в Венеции была издана книга Луки Пачоли "Божественная пропорция" с блестяще выполненными иллюстрациями, ввиду чего полагают, что их сделал Леонардо да Винчи. Kнига была восторженным гимном золотой пропорции. Cреди многих достоинств золотой пропорции монах Лука Пачоли не преминул назвать и ее "божественную суть" как выражение божественного триединства бог сын, бог отец и бог дух святой (подразумевалось, что малый отрезок есть олицетворение бога сына, больший отрезок - бога отца, а весь отрезок - бога духа святого).

3 выступление



    Леонардо да Винчи также много внимания уделял изучению золотого деления. Он производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении. Поэтому он дал этому делению название золотое сечение. Так оно и держится до сих пор как самое популярное.

В то же время на севере Европы, в Германии, над теми же проблемами трудился Альбрехт Дюрер. Он делает наброски введения к первому варианту трактата о пропорциях. Дюрер пишет. "Необходимо, чтобы тот, кто что-либо умеет, обучил этому других, которые в этом нуждаются. Это я и вознамерился сделать".Cудя по одному из писем Дюрера, он встречался с Лукой Пачоли во время пребывания в Италии. Альбрехт Дюрер подробно разрабатывает теорию пропорций человеческого тела. Важное место в своей системе соотношений Дюрер отводил золотому сечению. Pост человека делится в золотых пропорциях линией пояса, а также линией, проведенной через кончики средних пальцев опущенных рук, нижняя часть лица - ртом и т.д. Известен пропорциональный циркуль Дюрера.

Великий астроном XVI в. Иоган Kеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение). Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».

В последующие века правило золотой пропорции превратилось в академический канон и, когда со временем в искусстве началась борьба с академической рутиной, в пылу борьбы "вместе с водой выплеснули и ребенка". Вновь "открыто" золотое сечение было в середине XIX в.



4 выступление



    В 1855 г. немецкий исследователь золотого сечения профессор Цейзинг опубликовал свой труд "Эстетические исследования". Он абсолютизировал пропорцию золотого сечения, объявив ее универсальной для всех явлений природы и искусства. У Цейзинга были многочисленные последователи, но были и противники, которые объявили его учение о пропорциях «математической эстетикой».

Золотые пропорции в частях тела человека

Цейзинг проделал колоссальную работу. Он измерил около двух тысяч человеческих тел и пришел к выводу, что золотое сечение выражает средний статистический закон. Деление тела точкой пупа - важнейший показатель золотого сечения. Пропорции мужского тела колеблются в пределах среднего отношения 13 : 8 = 1,625 и несколько ближе подходят к золотому сечению, чем пропорции женского тела, в отношении которого среднее значение пропорции выражается в соотношении 8 : 5 = 1,6. У новорожденного пропорция составляет отношение 1 : 1, к 13 годам она равна 1,6, а к 21 году равняется мужской. Пропорции золотого сечения проявляются и в отношении других частей тела - длина плеча, предплечья и кисти, кисти и пальцев и т.д.

Справедливость своей теории Цейзинг проверял на греческих статуях. Наиболее подробно он разработал пропорции Аполлона Бельведерского. Подверглись исследованию греческие вазы, архитектурные сооружения различных эпох, растения, животные, птичьи яйца, музыкальные тона, стихотворные размеры. Цейзинг дал определение золотому сечению, показал, как оно выражается в отрезках прямой и в цифрах. Когда цифры, выражающие длины отрезков, были получены, Цейзинг увидел, что они составляют ряд Фибоначчи, который можно продолжать до бесконечности в одну и в другую сторону. Следующая его книга имела название «Золотое деление как основной морфологический закон в природе и искусстве». В 1876 г. в России была издана небольшая книжка, почти брошюра, с изложением этого труда Цейзинга. Автор укрылся под инициалами Ю.Ф.В. В этом издании не упомянуто ни одно произведение живописи.



5 выступление



    Золотые пропорции в фигуре человека

"Природа распорядилась в строении человеческого тела следующими пропорциями:

длина четырёх пальцев равна длине ладони,

четыре ладони равны стопе,

шесть ладоней составляют один локоть,

четыре локтя - рост человека.

Четыре локтя равны шагу, а двадцать четыре ладони равны росту человека.

Если вы расставите ноги так, чтобы расстояние между ними равнялось 1/14 человеческого роста, и поднимите руки таким образом, чтобы средние пальцы оказались на уровне макушки, то центральной точкой тела, равноудаленной от всех конечностей, будет ваш пупок.

Пространство между расставленными ногами и полом образует равносторонний треугольник.

Длина вытянутых рук будет равна росту.

Расстояние от корней волос до кончика подбородка равно одной десятой человеческого роста.

Расстояние от верхней части груди до макушки составляет 1/6 роста.

Расстояние же от верхней части груди до корней волос - 1/7.

Расстояние от сосков до макушки составляет ровно четверть роста.

Наибольшая ширина плеч - восьмая часть роста.

Расстояние от локтя до кончиков пальцев - 1/5 роста, от локтя до подмышечной ямки - 1/8.

Длина всей руки - это 1/10 роста.

Начало гениталий находится как раз посредине тела.

Стопа - 1/7 часть роста.

Расстояние от мыска ноги до коленной чашечки равно четверти роста, а расстояние от коленной чашечки до начала гениталий также равно четверти роста.

Расстояние от кончика подбородка до носа и от корней волос до бровей будет одинаково и, подобно длине уха, равно 1/3 лица."



Повторное открытие математических пропорций человеческого тела в XV веке, сделанное Леонардо Да Винчи и другими, стало одним из великих достижений, предшествующих итальянскому ренессансу. Рисунок сам по себе часто используется как неявный символ внутренней симметрии человеческого тела, и далее, Вселенной в целом.



6 выступление



    В конце XIX – начале XX вв. появилось немало чисто формалистических теории о применении золотого сечения в произведениях искусства и архитектуры. С развитием дизайна и технической эстетики действие закона золотого сечения распространилось на конструирование машин, мебели и т.д



Собор "Нотредам де Пари" в Париже, Франция

"Золотое сечение" в конструкции Парфенона, Афины, Греция

В качестве примера рассмотрим пропорциональный строй одной из жемчужин древнерусской архитектуры — храма Василия Блаженного в Москве. За "целое" a = 1 принята высота храма. Пропорции храма определяются восемью членами ряда золотого сечения.



7 выступление

    Золотое сечение в живописи

Портрет Моны Лизы (Джоконда) Леонардо да Винчи привлекает тем, что композиция рисунка построена на "золотых треугольниках", точнее на треугольниках, являющихся кусками правильного звездчатого пятиугольника.



Тайная вечеря

Леонардо да Винчи



Афинская школа

Рафаэль

Рафаэль не был ученым-математиком, но, подобно многим художникам той эпохи, обладал немалыми познаниями в геометрии. В знаменитой фреске “Афинская школа”, где в храме науки предстоит общество великих философов древности, наше внимание привлекает группа Эвклида - крупнейшего древнегреческого математика, разбирающего сложный чертеж.

Хитроумная комбинация двух треугольников также построена в соответствии с пропорцией золотого сечения: она может быть вписана в прямоугольник с соотношением сторон 5/8. Этот чертеж удивительно легко вставляется в верхний участок архитектуры. Верхний угол треугольника упирается в замковый камень арки на ближнем к зрителю участке, нижний - в точку схода перспектив, а боковой участок обозначает пропорции пространственного разрыва между двумя частями арок.













8 выступление



    Золотое сечение в работе сердца

Для каждого вида животных существует частота сердцебиений Vk, при которой длительности систолы, диастолы и всего кардиоцикла соотносятся между собою по пропорции "золотого сечения" (таблица).

Следует отметить, что "золотая" частота практически равна сердечному ритму здоровых, физически активных организмов в покое: для человека Vk = 63 уд/мин, для собаки Vk = 94 уд/мин. Деятельность сердца при Vk соответствует "золотому" режиму кровоснабжения организма человека и животных.

"золотой" режим кровоснабжения всего организма (и самого сердца в частности) является наиболее экономичным по сравнению с другими режимами, соответствующими различным уровням нагрузки: чем больше с увеличением нагрузки временная структура отклоняется от "золотого" соотношения (V /Vk = 1) тем больше энергетическая "цена" изгнания единичного объема крови.

общая закономерность: каждое звено в системе сердца, начиная с субклеточных параметров кардиомиоцита до сердечной мышцы, от структур эритроцита до крови в целом, от отдельного сосуда до коронарного русла, имеет оптимальную организацию и "золотое сечение" является гарантом нормального, оптимального функционирования сердца и всей системы кровоснабжения организма.



9 выступление



    Применение правила "Золотого сечения"

при исследовании журналистского текста

Читатель воспринимает журналистское произведение, интуитивно подчиняясь всеобщему закону гармонии, согласно которому наиболее важные смысловые элементы концепции располагаются по правилу золотого сечения. Для этого читателю не требуются никакие измерения, не нужно ничего знать о секретах "прекрасных пропорций" 3:2 или 5:3. Образное выражение "воспринимать сердцем" обретает почти буквальный смысл, если, вытянув текст в одну колонку, представить его длину как рост человека и провести линию через сердце: это и есть линия золотого сечения. При редактировании своего или чужого текста, заглянув предварительно в места золотого сечения, можно сразу "схватить" концепцию произведения, оценить ее логичность и далее, читая весь текст, следить уже за тем, как концепция будет развернута.



10 выступление



    Золотое сечение в музыкальных произведениях

Розенов проанализировал популярнейшие и наиболее излюбленные произведения гениальных авторов Баха, Моцарта, Бетховена, Шопена, Вагнера, Глинки, а также произведения народного творчества наиболее древнего происхождения, живучесть которых является достаточным доказательством их эстетической ценности и широкой популярности.

Но помимо установления самого факта наличия закона золотого сечения в музыкальных произведениях и его огромного эстетического значения в музыке математический анализ музыки (даже такой элементарный) позволяет сделать некоторые выводы о характерных особенностях творчества самих композиторов. Так, сравнивая проявление закона золотого сечения у Баха и Бетховена, Розенов пишет: "Мы находим у Баха сравнительно более детальную и органическую сплоченность. Закон золотого деления проявляется у него с поразительной точностью в соотношениях крупных и мелких частей как в строгих, так и в свободных формах, что, несомненно, соответствует с характером, этого гениального мастера-труженика, сильным, здоровым и уравновешенным, с его глубоко сосредоточенным отношением к работе и детально отделанной манерою письма. У Бетховена проявление закона золотого сечения глубоко логично по отношению к размерам частей формы, но главным образом указывает на силу темперамента этого автора по точности совпадения всех моментов высшего напряжения чувств и разрешения подготовленного ожидания с моментами золотых сечений. У Шопена внутренняя формальная связь сравнительно слабее и проявляется не сплошь, а лишь местами. По силе темперамента он сходен с Бетховеном, но проявление это более внешне и касается чаще изящной нарядности изложения мысли, нежели его внутренней логики. У Моцарта темперамент проявляется сравнительно слабее, закон золотого сечения направлен у него особенно часто к подчеркиванию драматических элементов (психологических контактов, противопоставлений характеров) и трагических положений. У Глинки мы находим применение данного закона только лишь в широких масштабах при полном почти отсутствии мелочных соответствий, встречающихся так часто у Баха и Шопена". Простой математический анализ, не выходящий за рамки арифметики, позволяет совершенно иными глазами взглянуть на музыкальное произведение, увидеть его скрытую внутреннюю красоту, которую мы только ощущаем, слушая произведение, и которую мы "видим", проводя его математический анализ.



11 выступление



    Ряд Фибоначчи

С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится». Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:



Месяцы 0 1 2 3 4 5 6 7 8 9 10 11 12 и т.д.

Пары кроликов 0 1 1 2 3 5 8 13 21 34 55 89 144 и т.д.

Ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д.



известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления. Так, 21 : 34 = 0,617, а 34 : 55 = 0,618. Это отношение обозначается символом Ф. Только это отношение – 0,618 : 0,382 – дает непрерывное деление отрезка прямой в золотой пропорции, увеличение его или уменьшение до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.. Фибоначчи так же занимался решением практических нужд торговли: с помощью какого наименьшего количества гирь можно взвесить товар?

Фибоначчи доказывает, что оптимальной является такая система гирь: 1, 2, 4, 8, 16...



12 выступление



    Обобщенное ЗОЛОТОЕ СЕЧЕНИЕ

Ряд Фибоначчи мог бы остаться только математическим казусом, если бы не то обстоятельство, что все исследователи золотого деления в растительном и в животном мире, не говоря уже об искусстве, неизменно приходили к этому ряду как арифметическому выражению закона золотого деления.



Раковина закручена по спирали.

Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.

Форма спирально завитой раковины привлекла внимание Архимеда. Он изучал ее и вывел уравнение спирали. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике



Золотое сечение в шрифтах и бытовых предметах



Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.



В ящерице с первого взгляда улавливаются приятные для нашего глаза пропорции – длина ее хвоста так относится к длине остального тела, как 62 к 38.

И в растительном, и в животном мире настойчиво пробивается формообразующая тенденция природы – симметрия относительно направления роста и движения. Здесь золотое сечение проявляется в пропорциях частей перпендикулярно к направлению роста.

Природа осуществила деление на симметричные части и золотые пропорции. В частях проявляется повторение строения целого.



    Учитель подводит итоги. Обобщение вышесказанного. Выделение главного. Задаются вопросы по данной теме.

    Домашнее задание: практически выяснить наличие «золотого сечения» на примере пальцев рук. Сделать зарисовки растений в тетради, попытаться построить «золотое сечение», произвести различные вычисления (выдаются карточки с примерами «золотого сечения»









Опубликовано


Комментарии (0)

Чтобы написать комментарий необходимо авторизоваться.