12+  Свидетельство СМИ ЭЛ № ФС 77 - 70917
Лицензия на образовательную деятельность №0001058
 Пользовательское соглашение      Контактная и правовая информация
 
Педагогическое сообщество
УРОК.РФ
УРОК
Материал опубликовала
Ирина Игоревна Буркова267
Координатор проекта «Сборник методических разработок и педагогических идей»

Предмет:

Класс:

УМК:

Количество часов:

Геометрия

7-9

Мерзляк А.Г., Полонский В.Б., Якир М.С.

204

Пояснительная записка

Программа включает четыре раздела:

    Пояснительная записка, в которой конкретизируются общие цели основного общего образования по алгебре, даётся характеристика учебного курса, его место в учебном плане, приводятся личностные, метапредметные и предметные результаты освоения учебного курса, планируемые результаты изучения учебного курса.

    Содержание курса геометрии 7-9 классов.

    Примерное тематическое планированиес определением основных видов учебной деятельности обучающихся.

    Рекомендации по организации и оснащению учебного процесса.

Общая характеристика программы

Программа по математике составлена на основе Фундаментального ядра содержания общего образования, требований к результатам освоения образовательной программы основного общего образования, представленных в федеральном государственном стандарте основного общего образования с учётом преемственности с Примерными программами для начального общего образования по математике. В ней также учитываются доминирующие идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования, которые обеспечивают формирование российской гражданской идентичности, коммуникативных качеств личности, испособствуют формированию ключевой компетенции – умению учиться.

Практическая значимость школьного курса геометрии 7-9 классов состоит в том, что предметом её изучения явля­ются пространственные формы и количественные отноше­ния реального мира. В современном обществе математиче­ская подготовка необходима каждому человеку, так как ма­тематика присутствует во всех сферах человеческой дея­тельности.

Геометрия является одним из опорных школьных пред­метов. Геометрические знания и умения необходимы для изучения других школьных дисциплин (физика, геогра­фия, химия, информатика и др.).

Одной из основных целей изучения геометрии является развитие мышления, прежде всего формирование абстракт­ного мышления. В процессе изучения геометрии формиру­ются логическое и алгоритмическое мышление, а также та­кие качества мышления, как сила и гибкость, конструктив­ность и критичность. Для адаптации в современном информационном обществе важным фактором является формирование математического стиля мышления, вклю­чающего в себя индукцию и дедукцию, обобщение и конкре­тизацию, анализ и синтез, классификацию и систематиза­цию, абстрагирование и аналогию.

Обучение геометрии даёт возможность школьникам на­учиться планировать свою деятельность, критически оце­нивать её, принимать самостоятельные решения, отстаи­вать свои взгляды и убеждения.

В процессе изучения геометрии школьники учатся изла­гать свои мысли ясно и исчерпывающе, приобретают навы­ки чёткого выполнения математических записей, при этом использование математического языка позволяет развивать у учащихся грамотную устную и письменную речь.

Знакомство с историей развития геометрии как науки формирует у учащихся представления о геометрии как час­ти общечеловеческой культуры.

Значительное внимание в изложении теоретического ма­териала курса уделяется его мотивации, раскрытию сути основных понятий, идей, методов. Обучение построено на базе теории развивающего обучения, что достигается осо­бенностями изложения теоретического материала и упраж­нениями на сравнение, анализ, выделение главного, установ­ление связей, классификацию, доказательство, обобщение и систематизацию. Особо акцентируются содержательное раскрытие математических понятий, толкование сущности математических методов и области их применения, демон­страция возможностей применения теоретических знаний для решения разнообразных задач прикладного характера. Осознание общего, существенного является основной базой для решения упражнений. Важно приводить детальные по­яснения к решению типовых упражнений. Этим раскрыва­ется суть метода, предлагается алгоритм или эвристическая схема решения упражнений определённого типа.

Общая характеристика курса

геометрии в 7-9 классах

Содержание курса геометрии в 7-9 классах представлено в виде следующих содержательных разделов: «Геометриче­ские фигуры», «Измерение геометрических величин», «Координаты», «Векторы», «Геометрия в историческом развитии».

Содержание раздела «Геометрические фигуры» служит базой для дальнейшего изучения учащимися геометрии. Изучение материала способствует формированию у уча­щихся знаний о геометрической фигуре как важнейшей ма­тематической модели для описания реального мира. Глав­ная цель данного раздела — развить у учащихся воображе­ние и логическое мышление путём систематического изучения свойств геометрических фигур и применения этих свойств при решении задач вычислительного и конструк­тивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядно­сти с формально-логическим подходом является неотъемле­мой частью геометрических знаний.

Содержание раздела «Измерение геометрических вели­чин» расширяет и углубляет представления учащихся об из­мерениях длин, углов и площадей фигур, способствует фор­мированию практических навыков, необходимых как при решении геометрических задач, так и в повседневной жизни.

Содержание разделов «Координаты», «Векторы» расши­ряет и углубляет представления учащихся о методе коорди­нат, развивает умение применять алгебраический аппарат при решении геометрических задач, а также задач смеж­ных дисциплин.

Раздел «Геометрия в историческом развитии», содержа­ние которого фрагментарно внедрено в изложение нового материала как сведения об авторах изучаемых фактов и тео­рем, истории их открытия, предназначен для формирова­ния представлений о геометрии как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения.



Личностные, метапредметные

и предметные результаты

освоения содержания курса математики

Изучение математики по данной программе способствует формированию у учащихся личностных, метапредметных,предметных результатов обучения, соответствующих требованиям Федерального государственного образовательного стандарта основного общего образования.

Личностные результаты:

    воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству,осознания вклада отечественных учёных в развитие мировой науки;

    ответственное отношение к учению, готовность и способностьобучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; 

    осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтенийс учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

    умение контролировать процесс и результат учебной и математической деятельности;

    критичность мышления, инициатива, находчивость, активность при решении математических задач.

Метапредметные результаты:

    умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

    умение соотносить свои действия с планируемыми результатами,

осуществлять контроль своей деятельности в процессе достижения

результата, определять способы действий в рамках предложенных условий итребований, корректировать свои действия в соответствии с изменяющейся

ситуацией;

    умение определять понятия, создавать обобщения, устанавливать

аналогии, классифицировать, самостоятельно выбирать основания и

критерии для классификации;

    умение устанавливать причинно-следственные связи,строить логическое рассуждение, умозаключение (индуктивное,дедуктивное и по аналогии) и делать выводы;

    умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения;

    компетентность в области использования информационно-коммуникационных технологий;

    первоначальные представления об идеях и о методах математики как об универсальном языке науки и технике, о средстве моделирования явлений и процессов;

    умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

    умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;

    умение понимать и использовать математические средства наглядности (графики, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации.

    умение выдвигать гипотезы при решении задачи понимать необходимость их проверки;

    понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом.

Предметные результаты:

1)осознание значения геометрии для повседневной жизни человека;

2)представление о геометрии как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;

3)развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую ин­формацию), точно и грамотно выражать свои мысли с применением математической терминологии и симво­лики, проводить классификации, логические обоснова­ния;

4)владение базовым понятийным аппаратом по основным разделам содержания;

5)систематические знания о фигурах и их свойствах;

6)практически значимые геометрические умения и навы­ки, умение применять их к решению геометрических и негеометрических задач, а именно:

    изображать фигуры на плоскости;

    использовать геометрический язык для описания предметов окружающего мира;

    измерять длины отрезков, величины углов, вычис­лять площади фигур;

    распознавать и изображать равные, симметричные и подобные фигуры;

    выполнять построения геометрических фигур с по­мощью циркуля и линейки;

    читать и использовать информацию, представлен­ную на чертежах, схемах;

    проводить практические расчёты.

Место курса геометрии в учебном плане

Базисный учебный (образовательный) план на изучение геометрии в 7-9 классах основной школы отводит 3 учебных часов в неделю в течение каждого года обучения, всего 204часов. Учебное время может быть увеличено до 3 часов в неделю за счёт вариативной части базисного плана.

Планируемые результаты обучения

геометрии в 7-9 классах

Геометрические фигуры

Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

• классифицировать геометрические фигуры;

• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

• доказывать теоремы;

• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

• приобрести опыт примененияалгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки:анализ, построение, доказательство и исследование;

• научиться решать задачи на построениеметодомгеометрическогоместаточекиметодомподобия;

• приобрести опыт исследования свойствпланиметрических фигур с помощью компьютерных программ;

• приобрести опыт выполнения проектов.

Измерение геометрических величин

Выпускник научится:

• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

• вычислять длину окружности, длину дуги окружности;

• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

• использовать координатный метод для изучения свойств прямых и окружностей.

Выпускникполучитвозможность:

• овладеть координатным методом решениязадач на вычисления и доказательство

• приобрести опытиспользования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

• приобрести опытвыполнения проектовна тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы

Выпускник научится:

• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускникполучитвозможность:

• овладеть векторным методом для решения задач на вычисления и доказательства;

• приобрести опыт выполнения проектов.

Содержание курса геометрии 7-9 классов.

Простейшие геометрические фигуры

Точка, прямая. Отрезок, луч. Угол. Виды углов. Смеж­ные и вертикальные углы. Биссектриса угла.

Пересекающиеся и параллельные прямые. Перпендику­лярные прямые. Признаки параллельности прямых. Свой­ства параллельных прямых. Перпендикуляр и наклонная к прямой.


Многоугольники

Треугольники. Виды треугольников. Медиана, биссек­триса, высота, средняя линия треугольника. Признаки ра­венства треугольников. Свойства и признаки равнобедрен­ного треугольника. Серединный перпендикуляр отрезка. Сумма углов треугольника. Внешние углы треугольника. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Теорема Пифагора.

Подобные треугольники. Признаки подобия треугольни­ков. Точки пересечения медиан, биссектрис, высот треуголь­ника, серединных перпендикуляров сторон треугольника. Свойство биссектрисы треугольника. Теорема Фалеса. Метри­ческие соотношения в прямоугольном треугольнике. Синус, косинус, тангенс, котангенс острого угла прямоугольного тре­угольника и углов от 0 до 180. Формулы, связывающие си­нус, косинус, тангенс, котангенс одного и того же угла. Реше­ние треугольников. Теорема синусов и теорема косинусов.

Четырёхугольники. Параллелограмм. Свойства и при­знаки параллелограмма. Прямоугольник, ромб, квадрат, их свойства и признаки. Трапеция. Средняя линия трапе­ции и её свойства.

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Геометрические построения

Окружность и круг. Элементы окружности и круга. Цен­тральные и вписанные углы. Касательная к окружности и её свойства. Взаимное расположение прямой и окружно­сти. Описанная и вписанная окружности треугольника. Вписанные и описанные четырёхугольники, их свойства и признаки. Вписанные и описанные многоугольники.

Геометрическое место точек (ГМТ). Серединный перпен­дикуляр отрезка и биссектриса угла как ГМТ.

Геометрические построения циркулем и линейкой. Основ­ные задачи на построение: построение угла, равного данно­му, построение серединного перпендикуляра данного отрез­ка, построение прямой, проходящей через данную точку и перпендикулярной данной прямой, построение биссектри­сы данного угла. Построение треугольника по заданным эле­ментам. Метод ГМТ в задачах на построение.

Измерение геометрических величин

Длина отрезка. Расстояние между двумя точками. Рас­стояние от точки до прямой. Расстояние между параллель­ными прямыми.

Периметр многоугольника.

Длина окружности. Длина дуги окружности.

Градусная мера угла. Величина вписанного угла.

Понятия площади многоугольника. Равновеликие фигу­ры. Нахождение площади квадрата, прямоугольника, па­раллелограмма, треугольника, трапеции.

Понятие площади круга. Площадь сектора. Отношение площадей подобных фигур.

Декартовые координаты на плоскости

Формула расстояния между двумя точками. Координаты середины отрезка. Уравнение фигуры. Уравнения окружно­сти и прямой. Угловой коэффициент прямой.


Векторы

Понятие вектора. Модуль (длина) вектора. Равные векто­ры. Коллинеарные векторы. Координаты вектора. Сложе­ние и вычитание векторов. Умножение вектора на число. Скалярное произведение векторов. Косинус угла между двумя векторами.

Геометрические преобразования

Понятие о преобразовании фигуры. Движение фигуры. Виды движенияфигуры: параллельный перенос, осевая симметрия, центральная симметрия, поворот. Равные фи­гуры. Гомотетия. Подобие фигур.


Элементы логики

Определение. Аксиомы и теоремы. Доказательство. До­казательство от противного. Теорема, обратная данной. Не­обходимое и достаточное условия. Употребление логиче­ских связокесли..., то ..., тогда и только тогда.

Геометрия в историческом развитии

Из истории геометрии, «Начала» Евклида. История пя­того постулата Евклида. Тригонометрия — наука об измере­нии треугольников. Построение правильных многоугольни­ков. Как зародилась идея координат.

Н.И. Лобачевский. Л. Эйлер. Фалес. Пифагор.

Примерное тематическое планирование. Геометрия. 7 класс

(2 часа в неделю, всего 68 часов)

Номер

параграфа

Содержание учебного
материала

Количество часов

Характеристика основных видов деятельности ученика
(на уровне учебных действий)

Глава 1

Простейшие

геометрические фигуры
и их свойства

15

1

Точки и прямые

2

Приводить примеры геометрических фигур.

Описывать точку, прямую, отрезок, луч, угол.

Формулировать:

определения: равных отрезков, середины отрезка, расстояния между двумя точками, дополнительных лучей, развёрнутого угла, равных углов, биссектрисы угла, смежных и вертикальных углов, пересекающихся прямых, перпендикулярных прямых, перпендикуляра, наклонной, расстояния от точки до прямой;

свойства: расположения точек на прямой, измерения отрезков и углов, смежных и вертикальных углов, перпендикулярных прямых; основное свойство прямой.

Классифицировать углы.

Доказывать: теоремы о пересекающихся прямых, о свойствах смежных и вертикальных углов, о единственности прямой, перпендикулярной данной (случай, когда точка лежит на данной прямой).

Находить длину отрезка, градусную меру угла, используя свойства их измерений.

Изображать с помощью чертёжных инструментов геометрические фигуры: отрезок, луч, угол, смежные и вертикальные углы, перпендикулярные прямые, отрезки и лучи.

Пояснять, что такое аксиома, определение.

Решать задачи на вычисление и доказательство, проводя необходимые доказательные рассуждения

2

Отрезок и его длина

3

3

Луч. Угол. Измерение углов

3

4

Смежные и вертикальные углы

3

5

Перпендикулярные прямые

1

6

Аксиомы

1

Повторение и систематизация учебного материала

1

Контрольная работа № 1

1

Глава 2

Треугольники

18

7

Равные треугольники. Высота, медиана, биссектриса треугольника

2

Описывать смысл понятия «равные фигуры». Приводить примеры равных фигур.

Изображать и находить на рисунках равносторонние, равнобедренные, прямоугольные, остроугольные, тупоугольные треугольники и их элементы.

Классифицировать треугольники по сторонам и углам.

Формулировать:

определения: остроугольного, тупоугольного, прямоугольного, равнобедренного, равностороннего, разностороннего треугольников; биссектрисы, высоты, медианы треугольника; равных треугольников; серединного перпендикуляра отрезка; периметра треугольника;

свойства: равнобедренного треугольника, серединного перпендикуляра отрезка, основного свойства равенства треугольников;

признаки: равенства треугольников, равнобедренного треугольника.

Доказывать теоремы: о единственности прямой, перпендикулярной данной (случай, когда точка лежит вне данной прямой); три признака равенства треугольников; признаки равнобедренного треугольника; теоремы о свойствах серединного перпендикуляра, равнобедренного и равностороннего треугольников.

Разъяснять, что такое теорема, описывать структуру теоремы. Объяснять, какую теорему называют обратной данной, в чём заключается метод доказательства от противного. Приводить примеры использования этого метода.

Решать задачи на вычисление и доказательство

8

Первый и второй признаки равенства треугольников

5

9

Равнобедренный треугольник и его свойства

4

10

Признаки равнобедренного треугольника

2

11

Третий признак равенства треугольников

2

12

Теоремы

1

Повторение и систематизация учебного материала

1

Контрольная работа № 2

1

Глава 3

Параллельные прямые. Сумма углов треугольника

16

13

Параллельные прямые

1

Распознавать на чертежах параллельные прямые.

Изображать с помощью линейки и угольника параллельные прямые.

Описывать углы, образованные при пересечении двух прямых секущей.

Формулировать:

определения: параллельных прямых, расстояния между параллельными прямыми, внешнего угла треугольника, гипотенузы и катета;

свойства: параллельных прямых; углов, образованных при пересечении параллельных прямых секущей; суммы улов треугольника; внешнего угла треугольника; соотношений между сторонами и углами треугольника; прямоугольного треугольника; основное свойство параллельных прямых;

признаки: параллельности прямых, равенства прямоугольных треугольников.

Доказывать: теоремы о свойствах параллельных прямых, о сумме углов треугольника, о внешнем угле треугольника, неравенство треугольника, теоремы о сравнении сторон и углов треугольника, теоремы о свойствах прямоугольного треугольника, признаки параллельных прямых, равенства прямоугольных треугольников.

Решать задачи на вычисление и доказательство

14

Признаки параллельности прямых

2

15

Свойства параллельных прямых

3

16

Сумма углов треугольника

4

17

Прямоугольный треугольник

2

18

Свойства прямоугольного треугольника

2

Контрольная работа № 3

1

Глава 4

Окружность и круг.

Геометрические построения

16

19

Геометрическое место точек. Окружность и круг

2

Пояснять, что такое задача на построение; геометрическое место точек (ГМТ). Приводить примеры ГМТ.

Изображать на рисунках окружность и её элементы; касательную к окружности; окружность, вписанную в треугольник, и окружность, описанную около него. Описывать взаимное расположение окружности и прямой.

Формулировать:

определения: окружности, круга, их элементов; касательной к окружности; окружности, описанной около треугольника, и окружности, вписанной в треугольник;

свойства: серединного перпендикуляра как ГМТ; биссектрисы угла как ГМТ; касательной к окружности; диаметра и хорды; точки пересечения серединных перпендикуляров сторон треугольника; точки пересечения биссектрис углов треугольника;

признаки касательной.

Решать основные задачи на построение: построение угла, равного данному; построение серединного перпендикуляра данного отрезка; построение прямой, проходящей через данную точку и перпендикулярной данной прямой; построение биссектрисы данного угла; построение треугольника по двум сторонам и углу между ними; по стороне и двум прилежащим к ней углам.

Решать задачи на построение методом ГМТ.

Строить треугольник по трём сторонам.

Решать задачи на вычисление, доказательство и построение

20

Некоторые свойства окружности. Касательная к окружности

3

21

Описанная и вписанная окружности треугольника

3

22

Задачи на построение

3

23

Метод геометрических мест точек в задачах на построение

3

Повторение и систематизация учебного материала

1

Контрольная работа № 4

1

Обобщение
и систематизация
знаний учащихся

3

Упражнения для повторения курса 7 класса

2

Контрольная работа № 5

1

Примерное тематическое планирование. Геометрия. 8 класс

(2 часа в неделю, всего 68 часов)

Номер

параграфа

Содержание учебного
материала

Количество часов

Характеристика основных видов деятельности ученика
(на уровне учебных действий)

Глава 1

Четырёхугольники

22

1

Четырёхугольник и его элементы

2

Пояснять, что такое четырёхугольник. Описывать элементы четырёхугольника.

Распознавать выпуклые и невыпуклые четырёхугольники.

Изображать и находить на рисунках четырёхугольники разных видов и их элементы.

Формулировать:

определения: параллелограмма, высоты параллелограмма; прямоугольника, ромба, квадрата; средней линии треугольника; трапеции, высоты трапеции, средней линии трапеции; центрального угла окружности, вписанного угла окружности; вписанного и описанного четырёхугольника;

свойства: параллелограмма, прямоугольника, ромба, квадрата, средних линий треугольника и трапеции, вписанного угла, вписанного и описанного четырёхугольника;

признаки: параллелограмма, прямоугольника, ромба, вписанного и описанного четырёхугольника.

Доказывать: теоремы о сумме углов четырёхугольника, о градусной мере вписанного угла, о свойствах и признаках параллелограмма, прямоугольника, ромба, вписанного и описанного четырёхугольника.

Применять изученные определения, свойства и признаки к решению задач

2

Параллелограмм. Свойства параллелограмма

2

3

Признаки параллелограмма

2

4

Прямоугольник

2

5

Ромб

2

6

Квадрат

1

Контрольная работа № 1

1

7

Средняя линия треугольника

1

8

Трапеция

4

9

Центральные и вписанные углы

2

10

Вписанные и описанные четырёхугольники

2

Контрольная работа № 2

1

Глава 2

Подобие треугольников

16

11

Теорема Фалеса. Теорема о пропорциональных отрезках

6

Формулировать:

определение подобных треугольников;

свойства: медиан треугольника, биссектрисы треугольника, пересекающихся хорд, касательной и секущей;

признаки подобия треугольников.

Доказывать:

теоремы: Фалеса, о пропорциональных отрезках, о свойствах медиан треугольника, биссектрисы треугольника;

свойства: пересекающихся хорд, касательной и секущей;

признаки подобия треугольников.

Применять изученные определения, свойства и признаки к решению задач

12

Подобные треугольники

1

13

Первый признак подобия треугольников

5

14

Второй и третий признаки подобия треугольников

3

Контрольная работа № 3

1

Глава 3

Решение прямоугольных
треугольников

14

15

Метрические соотношения в прямоугольном треугольнике

1

Формулировать:

определения: синуса, косинуса, тангенса, котангенса острого угла прямоугольного треугольника;

свойства: выражающие метрические соотношения в прямоугольном треугольнике и соотношения между сторонами и значениями тригонометрических функций в прямоугольном треугольнике.

Записывать тригонометрические формулы, выражающие связь между тригонометрическими функциями одного и того же острого угла.

Решать прямоугольные треугольники.

Доказывать:

теорему о метрических соотношениях в прямоугольном треугольнике, теорему Пифагора;

формулы, связывающие синус, косинус, тангенс, котангенс одного и того же острого угла.

Выводить основное тригонометрическое тождество и значения синуса, косинуса, тангенса и котангенса для углов 30°, 45°, 60°.

Применять изученные определения, теоремы и формулы к решению задач

16

Теорема Пифагора

5

Контрольная работа № 4

1

17

Тригонометрические функции острого угла прямоугольного треугольника

3

18

Решение прямоугольных треугольников

3

Контрольная работа № 5

1

Глава 4

Многоугольники.

Площадь многоугольника

10

19

Многоугольники

1

Пояснять, что такое площадь многоугольника.

Описывать многоугольник, его элементы; выпуклые и невыпуклые многоугольники.

Изображать и находить на рисунках многоугольник и его элементы; многоугольник, вписанный в окружность, и многоугольник, описанный около окружности.

Формулировать:

определения: вписанного и описанного многоугольника, площади многоугольника, равновеликих многоугольников;

основные свойства площади многоугольника.

Доказывать: теоремы о сумме углов выпуклого n-угольника, площади прямоугольника, площади треугольника, площади трапеции.

Применять изученные определения, теоремы и формулы к решению задач

20

Понятие площади

многоугольника.

Площадь прямоугольника

1

21

Площадь параллелограмма

2

22

Площадь треугольника

2

23

Площадь трапеции

3

Контрольная работа № 6

1

Повторение

и систематизация

учебного материала

6

Упражнения для повторения курса 8 класса

5

Контрольная работа № 7

1

Примерное тематическое планирование. Геометрия. 9 класс

(2 часа в неделю, всего 68 часов)

Номер

параграфа

Содержание учебного
материала

Количество часов

Характеристика основных видов деятельности ученика
(на уровне учебных действий)

Глава 1

Решение треугольников

16

1

Синус, косинус, тангенс и котангенс угла от 0° до 180°

2

Формулировать:

определения: синуса, косинуса, тангенса, котангенса угла от 0° до 180°;

свойство связи длин диагоналей и сторон параллелограмма.

Формулировать и разъяснять основное тригонометрическое тождество. Вычислять значение тригонометрической функции угла по значению одной из его заданных функций.

Формулировать и доказывать теоремы: синусов, косинусов, следствия из теоремы косинусов и синусов, о площади описанного многоугольника.

Записывать и доказывать формулы для нахождения площади треугольника, радиусов вписанной и описанной окружностей треугольника.

Применять изученные определения, теоремы и формулы к решению задач

2

Теорема косинусов

3

3

Теорема синусов

3

4

Решение треугольников

3

5

Формулы для нахождения площади треугольника

4

Контрольная работа № 1

1

Глава 2
Правильные многоугольники

8

6

Правильные многоугольники и их свойства

4

Пояснять, что такое центр и центральный угол правильного многоугольника, сектор и сегмент круга.

Формулировать:

определение правильного многоугольника;

свойства правильного многоугольника.

Доказывать свойства правильных многоугольников.

Записывать и разъяснять формулы длины окружности, площади круга.

Записывать и доказывать формулы длины дуги, площади сектора, формулы для нахождения радиусов вписанной и описанной окружностей правильного многоугольника.

Строить с помощью циркуля и линейки правильные треугольник, четырёхугольник, шестиугольник.

Применять изученные определения, теоремы и формулы к решению задач

7

Длина окружности. Площадь круга

3

Контрольнаяработа № 2

1

Глава 3

Декартовы

координаты на плоскости

11

8

Расстояние между двумя точками с заданными координатами. Координаты середины отрезка

3

Описывать прямоугольную систему координат.

Формулировать: определение уравнения фигуры, необходимое и достаточное условия параллельности двух прямых.

Записывать и доказывать формулы расстояния между двумя точками, координат середины отрезка.

Выводить уравнение окружности, общее уравнение прямой, уравнение прямой с угловым коэффициентом.

Доказывать необходимое и достаточное условие параллельности двух прямых.

Применять изученные определения, теоремы и формулы к решению задач

9

Уравнениефигуры. Уравнение окружности

3

10

Уравнение прямой

2

11

Угловой коэффициент прямой

2

Контрольнаяработа № 3

1

Глава 4

Векторы

12

12

Понятие вектора

2

Описывать понятия векторных и скалярных величин. Иллюстрировать понятие вектора.

Формулировать:

определения: модуля вектора, коллинеарных векторов, равных векторов, координат вектора, суммы векторов, разности векторов, противоположных векторов, умножения вектора на число, скалярного произведения векторов;

свойства: равных векторов, координат равных векторов, сложения векторов, координат вектора суммы и вектора разности двух векторов, коллинеарных векторов, умножения вектора на число, скалярного произведения двух векторов, перпендикулярных векторов.

Доказывать теоремы: о нахождении координат вектора, о координатах суммы и разности векторов, об условии коллинеарности двух векторов, о нахождении скалярного произведения двух векторов, об условии перпендикулярности.

Находить косинус угла между двумя векторами.

Применять изученные определения, теоремы и формулы к решению задач

13

Координатывектора

1

14

Сложение и вычитание векторов

2

15

Умножение вектора на число

3

16

Скалярное произведение векторов

3

Контрольнаяработа № 4

1

Глава 5

Геометрические

преобразования

13

17

Движение (перемещение) фигуры. Параллельный перенос

4

Приводить примеры преобразования фигур.

Описывать преобразования фигур: параллельный перенос, осевая симметрия, центральная симметрия, поворот, гомотетия, подобие.

Формулировать:

определения: движения; равных фигур; точек, симметричных относительно прямой; точек, симметричных относительно точки; фигуры, имеющей ось симметрии; фигуры, имеющей центр симметрии; подобных фигур;

свойства: движения, параллельного переноса, осевой симметрии, центральной симметрии, поворота, гомотетии.

Доказывать теоремы: о свойствах параллельного переноса, осевой симметрии, центральной симметрии, поворота, гомотетии, об отношении площадей подобных треугольников.

Применять изученные определения, теоремы и формулы к решению задач

18

Осевая и центральная симметрии. Поворот

4

19

Гомотетия.Подобие фигур

4

Контрольнаяработа № 5

1

Повторение

и систематизация

учебного материала

8

Упражнения для повторения курса 9 класса

7

Контрольнаяработа № 6

1

Рекомендации по оснащению учебного процесса

Оснащение процесса обучения математике обеспечивается библиотечным фондом, печатными пособиями, а также информационно-коммуникативными средствами, экранно-звуковыми приборами, техническими средствами обучения, учебно-практическим и учебно-лабораторным оборудованием.

Библиотечный фонд



Нормативные документы

1. Федеральный государственный образовательный стандарт основного общего образования.

2. Примерные программы основного общего образования. Математика. (Стандарты второго поколения). − М.: Просвещение. 2010.

3. Формирование универсальных учебных действий в основной школе. Система заданий / А. Г. Асмолов, О. А. Карабанова. − М.: Просвещение. 2010.

Учебно – методический комплект

1. Геометрия: 7 класс: учебник для учащихся общеобразо­вательных учреждений/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф, 2012.

2. Геометрия: 7 класс: дидактические материалы: сборник задач и контрольных работ/ А.Г. Мерзляк, В.Б. Полон­ский, М.С. Якир. — М. :Вентана-Граф, 2013.

3. Геометрия: 7 класс: рабочие тетради №1,2/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф, 2013.

4. Геометрия: 7 класс: методическое пособие/ Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вента­на-Граф, 2013.

5. Геометрия: 8 класс: учебник для учащихся общеобразо­вательных учреждений/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф, 2013.

6. Геометрия: 8 класс: дидактические материалы: сборник задач и контрольных работ / А.Г. Мерзляк, В.Б. Полон­ский, М.С. Якир. — М. :Вентана-Граф, 2013.

7. Геометрия: 8 класс: рабочие тетради №1,2/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф, 2013.

8. Геометрия: 8 класс: методическое пособие/Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вента­на-Граф, 2013.

9. Геометрия: 9 класс: учебник для учащихся общеобразо­вательных учреждений/ А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф. (Готовится к выпуску в 2014 г.)

10. Геометрия: 9 класс : дидактические материалы: сбор­ник задач и контрольных работ/ А.Г. Мерзляк, В.Б. По­лонский, М.С. Якир. — М. :Вентана-Граф. (Готовится к выпуску в 2014 г.)

11. Геометрия: 9 класс: рабочие тетради № 1, 2/ А.Г. Мерз­ляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф. (Готовится к выпуску в 2014 г.)

12. Геометрия: 9 класс: методическое пособие/Е.В. Буцко, А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М. :Вентана-Граф. (Готовится к выпуску в 2014 г.)

Справочные пособия, научно – популярная

и историческая литература

    Агаханов Н.Х., Подлипский О.К. Математика: районные олимпиады :6-11 классы. – М.: Просвещение,1990.

    Гаврилова Т.Д. Занимательная математика:5-11 классы. – Волгоград: Учитель, 2008.

    Левитас Г.Г. Нестандартные задачи по математике.- М.: Илекса, 2007.

    Екимова М.А, Кукин Г.П. Задачи на разрезание. – М.: МЦНМО,2002

    Перли С.С., Перли Б.С. Страницы русской истории на уроках математики. – М. : Педагогика-Пресс,1994.

    Пичугин Л.Ф. За станицами учебника алгебры. – М.: Просвещение, 2010.

    Пойа Дж. Как решать задачу? – М.: Просвещение,1975.

    Произволов В.В. Задачи на вырост. – М. : МИРОС, 1995.

    Шарыгин.И.Ф., Ерганжиева Л.Н. Наглядная геометрия. – М. :МИРОС,1995.

    Фарков А.В. Математические олимпиады в школе : 5-11 классы. М.: Айрис-Пресс, 2005.

    Энциклопедия для детей. Т.11 : Математика. – М.: Аванта+,2003.

    http://www.kuant.info/ Научно – популярный физико-математический журнал для школьников и студентов «Квант».

II. Печатные пособия

1. Таблицы по геометрии для 7− 9 классов.

2. Портреты выдающихся деятелей математики.

III Технические средства обучения

1. Компьютер.

2. Мультимедиапроектор.

3. Экран (на штативе или навесной).

4. Интерактивная доска.

VI. Учебно-практическая и учебно-лабораторное оборудование

    Доска магнитная с координатной сеткой.

    Набор геометрических фигур ( демонстрационный и раздаточный).

    Набор геометрических тел( демонстрационный и раздаточный).

2. Комплект чертёжных инструментов (классных и раздаточных): линейка, транспортир, угольник (30, 60), угольник (45, 45), циркуль.

Опубликовано


Комментарии (0)

Чтобы написать комментарий необходимо авторизоваться.