ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая программа по математике для 5-6 классов разработана на основе:
Федерального Закона об образовании в Российской Федерации: от 29 декабря 2012 г. № 273-ФЗ.
Федерального государственного образовательного стандарта основного общего образования: приказ Минобрнауки России от 17 декабря 2010 г. № 1897.
Примерной основной образовательной программы основного общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол №1/15 от 8 апреля 2015г)
Постановления Главного государственного санитарного врача Российской Федерации «Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях: от 29 декабря 2010 г. № 189, г. Москва; зарегистрировано в Минюсте РФ 3 марта 2011 г.
Основной образовательной программы основного общего образования МКОУ Малокрасноярская ООШ.
Примерных программ по учебным предметам «Математика 5-9 классы»,
Авторской программы Жохова В.И. «Математика. 5–6 классы.» Программа. Планирование учебного материала / В. И. Жохов. – М. : Мнемозина, 2012г.
и ориентирована на работу по учебно-методическому комплекту:
1. Виленкин, Н. Я. Математика. 5 класс: учебник / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. – М. : Мнемозина, 2012.
2. Виленкин, Н. Я. Математика. 6 класс: учебник / Н. Я. Виленкин, В. И.
3. Жохов, А. С. Чесноков, С. И. Шварцбурд. – М.: Мнемозина, 2013.
Жохов, В. И. Преподавание математики в 5 и 6 классах: методические рекомендации для учителя к учебнику Виленкина Н. Я. [и др.] / В. И. Жохов. – М.: Мнемозина, 2012г.
В рабочей программе учтены идеи и положения Концепции духовно-нравственного развития и воспитания личности гражданина России, Программы развития и формирования универсальных учебных действий, которые обеспечивают формирование российской гражданской идентичности, овладения ключевыми компетенциями, составляющими основу для саморазвития и непрерывного образования, целостность общекультурного, личностного и познавательного развития учащихся, и коммуникативных качеств личности.
Структура рабочей программы соответствует требованиям Федерального государственного образовательного стандарта ООО. Календарно-тематическое планирование является приложением к рабочей программе и представлено в виде образца по одной теме.
Изучение математики в 5-6 классах направлено на достижение следующих целей:
в направлении личностного развития:
развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
развитие интереса к математическому творчеству и математических способностей;
в метапредметном направлении:
формирование представлений (на доступном для учащихся уровне) о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации современного общества;
развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
формирование общих способов интеллектуальной деятельности, необходимых для изучения курсов математики 7-9, и необходимых для изучения смежных дисциплин, применения в повседневной жизни.
в предметном направлении:
овладение математическими знаниями и умениями, необходимыми для продолжения обучения в основной школе, применения в повседневной жизни.
Общая характеристика учебного предмета
Курс математики в 5-6 классах, с одной стороны, является непосредственным продолжением курса математики начальной школы, систематизирует, обобщает и развивает полученные там знания, с другой стороны, позволяет учащимся адаптироваться к новому уровню изучения предмета, создает необходимую основу, на которой будут базироваться систематические курсы 7-9 классов.
Практическая значимость школьного курса математики 5—6 классов обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.
Математика является одним из опорных предметов основной школы. Овладение учащимися системой математических знаний и умений необходимо в повседневной жизни, для изучения смежных дисциплин и продолжения образования. В первую очередь это относится к предметам естественнонаучного цикла, в частности к физике. Развитие логического мышления учащихся при обучении математике в 5—6 классах способствует усвоению предметов гуманитарного цикла. Практические умения и навыки арифметического характера необходимы для трудовой и профессиональной подготовки школьников.
Развитие у учащихся правильных представлений о сущности и происхождении математических абстракций, о соотношении реального и идеального, о характере отражения математической наукой явлений и процессов реального мира, о месте математики в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.
Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности воображения, математика развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения. Решение текстовых задач на всех этапах учебного процесса развивают творческие способности школьников.
Изучение математики в 5-6 классах позволяет формировать умения и навыки умственного труда: планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов. В процессе изучения математики школьники учатся излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобретают навыки чёткого, аккуратного и грамотного выполнения математических записей.
Важнейшей задачей школьного курса математики является развитие логического мышления учащихся. Сами объекты математических умозаключений и правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Показывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, математика вносит значительный вклад в эстетическое воспитание учащихся.
Место математики в учебном плане основной школы
Согласно Федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится не менее 875 часов из расчета 5 часов в неделю в 5–9 классах.
При этом выделяются два этапа — 5-6 классы и 7-9 классы, у каждого из которых свои самостоятельные функции. В 5-6 классах изучается интегрированный предмет «Математика», в 7-9 классах — два предмета «Алгебра» и «Геометрия».
Конкретно для 5 и 6 классов в МКОУ Малокрасноярская ООШ:
Года обучения |
Класс |
Кол-во часов в неделю |
Кол-во учебных недель |
Всего часов за учебный год |
2015-2016 |
5 класс |
5 |
35 |
175 |
2015-2016 |
6 класс |
5 |
35 |
175 |
Личностные, метапредметные и предметные результаты
освоения содержания предмета «Математика»
Изучение математики в 5-6 классах дает возможность учащимся достичь следующих результатов развития:
личностные:
1)ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
2)формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;
3)умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
4)первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
5)критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
6)креативности мышления, инициативы, находчивости, активности при решении арифметических задач;
7)умения контролировать процесс и результат учебной математической деятельности;
8)формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
1)способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
2) умения осуществлять контроль по образцу и вносить необходимые коррективы;
3) способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
4)умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
5)умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
6)развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
7)формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентностй);
8)первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;
9)развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
10)умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
11)умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
12)умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
13)понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
14)умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
15)способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
предметные:
1) умения работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), развития способности обосновывать суждения, проводить классификацию;
владения базовым понятийным аппаратом: иметь представление о числе, дроби, процентах, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность, шар, сфера и пр.), формирования представлений о статистических закономерностях в реальном мире и различных способах их изучения;
умения выполнять арифметические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
умения пользоваться изученными математическими формулами,"
знания основных способов представления и анализа статистических данных; умения решать задачи с помощью перебора всех возможных вариантов;
умения применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.
Cодержание курсов математики 5–6 классов, алгебры и геометрии 7–9 классов объединено как в исторически сложившиеся линии (числовая, алгебраическая, геометрическая, функциональная и др.), так и в относительно новые (стохастическая линия, «реальная математика»). Отдельно представлены линия сюжетных задач, историческая линия.
Элементы теории множеств и математической логикиСогласно ФГОС основного общего образования в курс математики введен раздел «Логика», который не предполагает дополнительных часов на изучении и встраивается в различные темы курсов математики и информатики и предваряется ознакомлением с элементами теории множеств.
Множества и отношения между ними
Множество, характеристическое свойство множества, элемент множества, пустое, конечное, бесконечное множество. Подмножество. Отношение принадлежности, включения, равенства. Элементы множества, способы задания множеств, распознавание подмножеств и элементов подмножеств с использованием кругов Эйлера.
Операции над множествами
Пересечение и объединение множеств. Разность множеств, дополнение множества. Интерпретация операций над множествами с помощью кругов Эйлера.
Элементы логики
Определение. Утверждения. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.
Высказывания
Истинность и ложность высказывания. Сложные и простые высказывания. Операции над высказываниями с использованием логических связок: и, или, не. Условные высказывания (импликации).
Содержание математики в 5- 6 классах
Натуральные числа и нуль. Натуральный ряд чисел и его свойства.
Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.
Запись и чтение натуральных чисел
Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.
Округление натуральных чисел
Необходимость округления. Правило округления натуральных чисел.
Сравнение натуральных чисел, сравнение с числом 0
Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулем, математическая запись сравнений, способы сравнения чисел.
Действия с натуральными числами
Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.
Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.
Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.
Степень с натуральным показателем
Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.
Числовые выражения
Числовое выражение и его значение, порядок выполнения действий.
Деление с остатком
Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.
Свойства и признаки делимости
Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.
Разложение числа на простые множители
Простые и составные числа, решето Эратосфена.
Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.
Алгебраические выражения
Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.
Делители и кратные
Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.
Дроби
Обыкновенные дроби
Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).
Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.
Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.
Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.
Арифметические действия со смешанными дробями.
Арифметические действия с дробными числами.
Способы рационализации вычислений и их применение при выполнении действий.
Десятичные дроби
Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.
Отношение двух чисел
Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.
Среднее арифметическое чисел
Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.
Проценты
Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.
Диаграммы
Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.
Рациональные числа
Положительные и отрицательные числа
Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.
Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.
Решение текстовых задач
Единицы измерений: длины, площади, объема, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.
Задачи на все арифметические действия
Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.
Задачи на движение, работу и покупки
Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.
Задачи на части, доли, проценты
Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.
Логические задачи
Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.
Основные методы решения текстовых задач: арифметический, перебор вариантов.
Наглядная геометрияФигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.
Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.
Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.
Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.
Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.
Решение практических задач с применением простейших свойств фигур.
История математикиПоявление цифр, букв, иероглифов в процессе счета и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.
Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.
Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена.
Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему ?
Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.
Направления проектной деятельности обучающихся
Курс математики в 5-6 классах предусматривает выполнение краткосрочных проектных работ.
Тематическое планирование
Основное содержание по темам |
Характеристика основных видов деятельности ученика (на уровне учебных действий) |
5 класс |
|
Натуральные числа и шкалы (15 ч) |
|
Десятичная система счисления. Римская нумерация. Арифметические действия над натуральными числами. |
Описывать свойства натурального ряда. Читать и записывать натуральные числа, сравнивать и упорядочивать их. Читать и записывать числа в непозиционной системе счисления (римская нумерация). Выполнять вычисления с натуральными числами, |
Геометрические фигуры: отрезок, прямая, луч, многоугольник. Измерение и построение отрезков. |
Распознавать на чертежах, рисунках, в окружающем мире геометрические фигуры. Приводить примеры аналогов в окружающем мире. Изображать геометрические фигуры и их конфигурации от руки и с использованием чертежных инструментов. Изображать геометрические фигуры на клетчатой бумаге. Измерять с помощью инструментов и сравнивать длины отрезков. Строить отрезки заданной длины с помощью линейки. |
Координатный луч. |
Знать понятие координатного луча, единичного отрезка и координаты точки. Уметь начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному штриху на координатном луче. |
Сложение и вычитание натуральных чисел (21 ч) |
|
Арифметические действия (сложение и вычитание) над натуральными числами. |
Выполнять сложение и вычитание с натуральными числами. |
Свойства сложения: переместительное, сочетательное, распределительное. |
Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения. |
Решение текстовых задач арифметическим способом. Математические модели реальных ситуаций (подготовка учащихся к решению задач алгебраическим методом). |
Решать текстовые задачи арифметическим способом. Составлять графические и аналитические модели реальных ситуаций. Составлять алгебраические модели реальных ситуаций. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. |
Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Упрощение выражений (простейшие случаи приведения подобных слагаемых). Уравнение. Корень уравнения. Решение уравнений методом отыскания неизвестного компонента действия (простейшие случаи). |
Читать и записывать буквенные выражения, составлять буквенные выражения по условиям задач. Выполнять простейшие преобразования буквенных выражений. Вычислять числовое значение буквенного выражения при заданных значениях букв. Решать уравнения методом отыскания неизвестного компонента действия (простейшие случаи). Составлять уравнения по условиям задач. |
Умножение и деление натуральных чисел (27 ч) |
|
Арифметические действия (умножение и деление) над натуральными числами. |
Выполнять умножение и деление многозначных чисел. Уметь решать уравнения на основе зависимости между компонентами. |
Деление с остатком. |
Выполнять деление с остатком при решении задач и интерпретировать ответ в соответствии с поставленным вопросом. |
Свойства умножения. |
Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения. |
Степень числа. Квадрат и куб числа. |
Знать понятие степени (с натуральным показателем), квадрата и куба числа. Уметь вычислять квадрат и куб натуральных чисел. |
Решение текстовых задач. |
Уметь решать текстовые задачи, требующие понимания смысла отношений «больше на…(в…раз)», «меньше на…(в…раз), а так же задачи на известные учащимся зависимости между величинами (скоростью, временем и пройденным путем; ценой, количеством и стоимостью товара и др.). |
Площади и объемы (12 ч) |
|
Понятие о площади плоских фигур. Равносоставленные и равновеликие фигуры. Периметр и площадь прямоугольника. Площадь прямоугольного треугольника, площадь произвольного треугольника. Вычисление по формулам. Единицы площадей. Объем тела. Формулы объема прямоугольного параллелепипеда, куба. |
Вычислять площади квадратов, прямоугольников, треугольников. Выражать одни единицы измерения площади через другие. Изготавливать прямоугольный параллелепипед из развертки. Вычислять объемы куба и прямоугольного параллелепипеда, используя формулы объема куба и прямоугольного параллелепипеда. Выражать одни единицы объема через другие. Исследовать и описывать свойства геометрических фигур (плоских и пространственных), используя эксперимент, наблюдение, измерение, моделирование. Моделировать геометрические объекты, используя бумагу, пластилин, проволоку и др. |
Обыкновенные дроби (23 ч) |
|
Окружность и круг. |
Знать понятия окружности и круга, радиуса, диаметра, центра. |
Основное свойство дроби. Сравнение дробей. Арифметические действия с обыкновенными дробями: сложение и вычитание дробей с одинаковыми и с разными знаменателями (простейшие случаи), умножение и деление обыкновенной дроби на натуральное число. |
Моделировать в графической, предметной форме понятия и свойства, связанные с понятием обыкновенной дроби. Формулировать, записывать с помощью букв основное свойство дроби, правила изучаемых действий с обыкновенными дробями. Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые эксперименты. Выполнять вычисления с обыкновенными дробями. |
Нахождение части от целого и целого по его части в два приема. |
Решать текстовые задачи, содержащие дробные данные (в том числе и из реальной практики). Решать задачи на нахождение части от целого и целого по его части, опираясь на смысл понятия дроби. |
Десятичные дроби. Сложение и вычитание десятичных дробей (13 ч) |
|
Сравнение десятичных дробей. Округление десятичных дробей. Арифметические действия (сложение и вычитание) с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. |
Записывать и читать десятичные дроби. Сравнивать и упорядочивать десятичные дроби. Выполнять вычисления с десятичными дробями (сложение и вычитание). Представлять десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. |
Решение текстовых задач арифметическим способом. Математические модели реальных ситуаций (подготовка учащихся к решению задач алгебраическим методом). |
Решать текстовые задачи арифметическим способом. Составлять графические и аналитические модели реальных ситуаций. Составлять алгебраические модели реальных ситуаций. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. |
Умножение и деление десятичных дробей (26 ч) |
|
Арифметические действия (сложение и вычитание) с десятичными дробями. |
Уметь выполнять умножение и деление десятичных дробей. Выполнять вычисления с десятичными дробями. Выполнять задания на все действия с натуральными числами и десятичными дробями. |
Среднее арифметическое нескольких чисел. |
Уметь находить среднее арифметическое нескольких чисел. |
Решение текстовых задач. |
Уметь решать текстовые задачи с данными, выраженными десятичными дробями. |
Инструменты для вычислений и измерений (17 ч) |
|
Начальные сведения о вычислениях на калькуляторе. |
Уметь выполнять простейшие действия на калькуляторе. |
Нахождение процента от величины, величины по ее проценту. |
Объяснять, что такое процент. Представлять проценты в дробях и дроби в процентах. Осуществлять поиск информации (в СМИ), содержащей данные, выраженные в процентах, интерпретировать их. Решать задачи на проценты (в том числе из реальной практики): находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить сколько процентов одно число составляет от другого. |
Примеры таблиц и диаграмм. |
Иметь представление о наглядном изображении распределения отдельных составных частей какой-нибудь величины. Уметь строить диаграммы. |
Угол. Величина (градусная мера) угла. Чертежный треугольник. Измерение углов. Построение угла заданной величины. Прямой угол. Острые и тупые углы. Развернутый угол. Биссектриса угла. Свойство биссектрисы угла. Треугольник. Виды треугольников. Сумма углов треугольника. |
Измерять с помощью инструментов и сравнивать величины углов. Строить углы заданной величины с помощью транспортира. Распознавать на чертежах, рисунках прямые, развернутые, тупые и острые углы. Находить неизвестный угол треугольника, используя свойство суммы углов треугольника. |
Повторение. Решение задач (21 ч) |
|
6 класс |
|
Делимость чисел (20 ч) |
|
Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное. |
Формулировать определения делителя и кратного, простого и составного числа, свойства и признаки делимости. Доказывать и опровергать с помощью контрпримеров утверждения о делимости чисел. Классифицировать натуральные числа (четные, нечетные, по остаткам от деления на 3 и т.п.) Формулировать признаки делимости на 2, 3, 5, 9, 10, 4 и 25. Применять признаки делимости, в том числе при сокращении дробей. Использовать признаки делимости в рассуждениях. Исследовать простейшие числовые закономерности, приводить числовые эксперименты ( том числе с использование компьютера). |
Сложение и вычитание дробей с разными знаменателями (22 ч) |
|
Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Сравнение дробей. Арифметические действия с обыкновенными дробями: сложение и вычитание дробей с разными знаменателями (случаи, требующие применения алгоритма отыскания НОК). |
Знать основное свойство дроби, применять его для сокращения дробей. Уметь приводить дроби к новому знаменателю. Уметь приводить дроби к общему знаменателю. Представлять десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной, находить десятичные приближения обыкновенных дробей. Выполнять вычисления с обыкновенными дробями: сложение и вычитание обыкновенных дробей и смешанных чисел. Решать основные задачи на дроби, в том числе задачи с практическим содержанием. Применять различные способы решения основных задач на дроби. |
Умножение и деление обыкновенных дробей (31 ч) |
|
Умножение и деление обыкновенных дробей. Основные задачи на дроби. |
Выполнять вычисления с обыкновенными дробями: умножение и деление обыкновенных дробей и смешанных чисел. Решать основные задачи на дроби, в том числе задачи с практическим содержанием. Применять различные способы решения основных задач на дроби. Приводить примеры задач на нахождение дроби от числа, число по заданному значению его дроби. Анализировать и осмысливать текст задач, аргументировать и презентовать решения. |
Отношения и пропорции (18 ч) |
|
Отношение, выражение отношения в процентах. Пропорция. Основное свойство пропорции. Пропорциональные и обратно пропорциональные величины. Задачи на пропорции. |
Формулировать определение отношения чисел. Понимать и объяснять, что показывает отношение двух чисел. Знать основное свойство пропорции. Анализировать и осмысливать текст задачи, извлекать необходимую информацию, моделировать условие с помощью схем, рисунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответствие условию. Решать задачи на деление чисел и величин в данном отношении, в том числе задачи практического характера. Формулировать отличие прямо и обратно пропорциональных величин. Приводить примеры величин, находящихся в прямо пропорциональной зависимости, обратно пропорциональной зависимости, комментировать примеры. Определять по условию задачи, какие величины являются прямо пропорциональными, обратно пропорциональными, а какие не являются ни теми, ни другими. Решать задачи на прямую и обратную пропорциональность. Решать текстовые задачи с помощью пропорции, основного свойства пропорции. |
Масштаб. Формулы длины окружности и площади круга. Шар. |
Знать, что такое масштаб. Строить с помощью чертежных инструментов окружность, круг. Определять длину окружности по готовому рисунку. Использовать формулу длины окружности при решении практических задач. Определять по готовому рисунку площадь круга, площадь комбинированных фигур. Использовать формулу площади круга при решении практических задач. Вычислять объем шара и площадь поверхности сферы, используя знания о приближённых значениях чисел. Анализировать задания, аргументировать и презентовать решения. Находить информацию по заданной теме в источниках различного типа. Использовать компьютерное моделирование и эксперимент для изучения свойств окружности. |
Положительные и отрицательные числа (13 ч) |
|
Целые числа: положительные, отрицательные и нуль. Модуль (абсолютная величина) числа и его геометрический смысл. Сравнение рациональных чисел. Изображение чисел на координатной прямой. Координата точки. |
Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш-проигрыш, выше-ниже уровня моря и т.п.) Распознавать натуральные, целые, дробные, положительные, отрицательные числа. Строить координатную прямую по алгоритму (прямая, с указанными на ней началом отсчёта, направлением отсчёта, и единичным отрезком). Изображать точками координатной прямой положительные и отрицательные рациональные числа. Выполнять обратную операцию. Понимать и применять в речи термины: координатная прямая, координата точки на прямой, положительное число, отрицательное число. Анализировать задания, аргументировать и презентовать решения. Характеризовать множество натуральных чисел, целых чисел, множество рациональных чисел. Понимать и применять геометрический смысл понятия модуля числа. Находить модуль данного числа. Объяснять, какие числа называются противоположными. Находить число, противоположное данному числу. Выполнять арифметические примеры, содержащие модуль, комментировать решения. Проводить по алгоритму простейшие исследования для определения расстояния между точками координатной прямой. Сравнивать с помощью координатной прямой: положительное число и нуль; отрицательное число и нуль; положительное и отрицательное числа; два отрицательных числа. Моделировать с помощью координатной прямой отношения «больше» и «меньше» для рациональных чисел. Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами. |
Сложение и вычитание положительных и отрицательных чисел (11 ч) |
|
Сложение и вычитание положительных и отрицательных чисел. Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий: переместительный, сочетательный, распределительный. |
Понимать геометрический смысл сложения рациональных чисел. Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять для преобразования числовых выражений. Распознавать алгебраическую сумму и её слагаемые. Представлять алгебраическую сумму в виде суммы положительных и отрицательных чисел, находить её рациональным способом. Вычислять значения буквенных выражений при заданных значениях букв. Участвовать в обсуждении возможных ошибок в цепочке преобразования выражения. |
Умножение и деление положительных и отрицательных чисел (12 ч) |
|
Понятие о рациональном числе. Арифметические действия с рациональными числами. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений. |
Знать понятие рационального числа. Выработать навыки арифметических действий с положительными и отрицательными числами. Уметь вычислять значения числовых выражений. Усвоить, что для обращения обыкновенной дроби в десятичную разделить (если это возможно) числитель на знаменатель. В каждом конкретном случае должны знать, в какую дробь обращается данная дробь – в десятичную или периодическую. Должны знать представление в виде десятичной дроби таких дробей, как ½, ¼, 1/5, 1/20, 1/25, 1/50. |
Решение уравнений (15 ч) |
|
Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Равенство буквенных выражений. Упрощение выражений, раскрытие скобок (простейшие случаи). Алгоритм решения уравнения переносом слагаемых из одной части уравнения в другую. |
Понимать и применять в речи термины: алгебраическое выражение, коэффициент, подобные слагаемые, приведение подобных слагаемых. Применять распределительный закон при упрощении алгебраических выражений, решении уравнений (приводить подобные слагаемые, раскрывать скобки). Формулировать, обосновывать, иллюстрировать примерами и применять правила раскрытия скобок, перед которыми стоит знак «+» или знак «–». Решать простейшие уравнения алгебраическим способом, используя перенос слагаемых из одной части уравнения в другую. |
Решение текстовых задач алгебраическим методом (выделение трех этапов математического моделирования). |
Понимать и использовать в речи терминологию: математическая модель реальной ситуации, работа с математической моделью. Анализировать и осмысливать текст задачи, переформулировать условие, извлекать необходимую информацию, выделять три этапа математического моделирования (составление математической модели реальной ситуации; работа с математической моделью; ответ на вопрос задачи), осуществлять самоконтроль, проверяя ответ на соответствие. |
Координаты на плоскости. (13 ч) |
|
Построение перпендикуляра к прямой и параллельных прямых с помощью чертежного треугольника и линейки. |
Уметь распознавать и изображать перпендикулярные и параллельные прямые. Иметь навыки их построения с помощью линейки и чертежного треугольника. |
Прямоугольная система координат на плоскости, абсцисса и ордината точки. |
Строить на координатной плоскости точки и фигуры по заданным координатам, определять координаты точек, отмеченных на координатной прямой. |
Примеры графиков, диаграмм. |
Уметь строить столбчатые диаграммы. |
Повторение. Решение задач (20 ч) |
Описание материально-технического обеспечения образовательного процесса
Состав учебно-методического комплекта (УМК):
1) Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика, 5 класс. Учебник, 2012г
2) Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И., Математика, 6 класс. Учебник, 2013г
3) Жохов, В. И. Математика. 5 класс. Контрольные работы для учащихся / В. И. Жохов, Л. Б. Крайнева. – М.: Мнемозина, 2013.
4) Жохов, В. И. Математические диктанты. 5 класс: пособие для учителей и учащихся / В. И. Жохов, И. М. Митяева. – М. : Мнемозина, 2011.
5) Жохов, В. И. Математический тренажер. 5 класс : пособие для учителей и учащихся / В. И. Жохов, В. Н. Погодин. – М. : Мнемозина, 2011.
6) Ерина, Т.М.Рабочая тетрадь по математике. К учебнику Н.Я. Виленкина и др. «Математика. 5 класс».- М.: Экзамен, 2013
7) Рудницкая, В. Н. Тесты по математике. К учебнику Н.Я. Виленкина и др. «Математика. 5 класс».- М.: Экзамен, 2014
8) Попов, М.А. Дидактические материалы по математике. 5 класс к учебнику Н. Я. Виленкина и др. «Математика 5 класс». ФГОС – «Экзамен», 2012г.
Рудницкая В. Н. УМК Математика 6 класс по учебнику Н. Я. Виленкина [тесты] ФГОС, ООО М.: Спринтер, 2012
10) Жохов И.. Математический тренажер. 6 класс. Пособие для учителей и учащихся. – М.: Мнемозина, 2013
Попов М. А. Дидактические материалы по математике. 6 класс к учебнику Н. Я. Виленкина и др. «Математика 6 класс». ФГОС – «Экзамен», 2013
Рудницкая В. Н. Рабочая тетрадь №1, №2. «Математика 6 класс». М.: Мнемозина, 2012
Технические средства обучения:
1) Компьютер.
2) Ноутбук
Основные интернет-ресурсы:
http://school-collection.edu.ru/
www.urokimatematiki.ru
http://infourok.ru
Наглядные пособия:
1) Портреты великих ученых-математиков.
2) Демонстрационные таблицы по темам.
3) Информационные стенды.
Модели геометрических тел;
Чертёжные принадлежности и инструменты.
Планируемые результаты изучения математики в 5-6 классах
Натуральные числа. Дроби. Рациональные числа
По завершении изучения курса математики 5-6 классов выпускник научится:
• понимать особенности десятичной системы счисления;
• оперировать понятиями, связанными с делимостью натуральных чисел;
• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
• сравнивать и упорядочивать рациональные числа;
• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.
Выпускник получит возможность:
• познакомиться с позиционными системами счисления с основаниями, отличными от 10;
• углубить и развить представления о натуральных числах и свойствах делимости;
• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Измерения, приближения, оценки
Выпускник научится:
• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
Выпускник получит возможность:
• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближённым.
Элементы алгебры
Выпускник научится:
• оперировать понятиями «числовое выражение», «буквенное выражение», упрощать выражения, содержащие слагаемые с одинаковым буквенным множителем; работать с формулами;
• решать простейшие линейные уравнений с одной переменной;
• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
Выпускник получит возможность:
• научиться выполнять преобразования целых буквенных выражений, применяя законы арифметических действий;
• овладеть простейшими приёмами решения уравнений; применять аппарат уравнений для решения разнообразных текстовых (сюжетных) задач.
Описательная статистика и вероятность
Выпускник получит возможность научиться:
• находить вероятность случайного события в простейших случаях;
• решать простейшие комбинаторные задачи на нахождение числа объектов или их комбинаций с использованием правила произведения.
Наглядная геометрия
Выпускник научится:
• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
• находить значения длин линейных элементов фигур, градусную меру углов от 0 до 180;
• распознавать и строить развёртки куба, прямоугольного параллелепипеда;
• вычислять площадь прямоугольника, круга, прямоугольного треугольника и площади фигур, составленных из них, объём прямоугольного параллелепипеда.
Выпускник получит возможность:
• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
• углубить и развить представления о пространственных геометрических фигурах;
• научиться применять понятие развёртки для выполнения практических расчётов.
Календарно-тематическое планирование по математике в 5 классе
Образец (Приложение к рабочей программе)
Продолжение табл.
[Таблица не отображается. Чтобы просмотреть таблицу, скачайте файл урока в начале страницы]