12+  Свидетельство СМИ ЭЛ № ФС 77 - 70917  Пользовательское соглашение      Контактная и правовая информация
 
Педагогическое сообщество
УРОК.РФ
УРОК
Материал опубликовала
Медведева Татьяна Петровна4532
Я - учитель маленькой сельской школы.
Россия, Воронежская обл., х. Хвощеватое
Материал размещён в группе «Математическая мозаика»

Муниципальное казенное общеобразовательное учреждение

Новомеловатская средняя общеобразовательная школа Калачеевского муниципального района Воронежской области

Рассмотрено Согласовано:

на методобъединении учителей Заместитель директора по УВР математики и информатики

руководитель МО Левченко В. В. Малеваный И.И._____________/ Протокол от 25.08. 2016 г. №1 29.08.2016г

Утверждаю:

Директор МКОУ Новомеловатская СОШ

Протасов А.Н.

Приказ от 29.08.2016г. №136

 


 

   

Рабочая программа по предмету «Математика»

( компонент основной образовательной программы ООО)

ФГОС ООО

5-9 класс

Срок освоения 5 лет

 

 

Составитель: Медведева Т. П.

учитель математики

первой квалификационной категории

2016г

Рабочая программа учебного предмета математика для 5-9 классов в МКОУ Новомеловатская СОШ составлена в соответствии с Требованиями к результатам освоения основной образовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте общего образования второго поколения (приказ Министерства образования и науки РФ от 17 декабря 2010 г. № 1897), с учетом основных идей и положений Программы развития универсальных учебных действий для общего образования, с соблюдением Санитарно - эпидемиологических правил и нормативов СанПиН 2.4.2.2821 – 10. «Санитарно - эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях», с соблюдением преемственности с примерными программами начального общего образования, на основе:

- Примерной основной образовательной программы основного общего образования ( http://fgosreestr.ru /)

- Основной образовательной программы МКОУ Новомеловатская СОШ

- Примерной программы по учебным предметам А.А.Кузнецов, М.В. Рыжаков, А.М.Кондаков

- Учебного плана МКОУ Новомеловатская СОШ Калачеевского района Воронежской области, где на учебный предмет математика отводится не менее 870 часов из расчёта 5 учебных часов в не­делю в 5-9 классах.

Программа ориентирована на использование учебно-методического комплекта авторов А.Г. Мерзляк, В.Б.Полонский, М.С.Якир издательства Москва, «Вентана -Граф».

В состав УМК входит учебник, согласно перечню учебников, утвержденных приказом Минобразования науки РФ, используемого для достижения поставленной цели в соответствии с образовательной программой учреждения.

 

Планируемые результаты освоения учебного предмета «Математика» 5–9 классы

Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 56 класс – «Математика», 79 класс – «Алгебра» и «Геометрия» являются следующие качества:

независимость и критичность мышления;

воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

система заданий учебников;

-представленная в учебниках в явном виде организация материала по принципу минимакса;

использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно-деятельностного подхода в обучении, технология оценивания.

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

56-й классы

– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

– выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

79-й классы

– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

– выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;

– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

– планировать свою индивидуальную образовательную траекторию;

– работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);

– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

– в ходе представления проекта давать оценку его результатам;

– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

– уметь оценить степень успешности своей индивидуальной образовательной деятельности;

– давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

Средством формирования регулятивных УУД служат технология системно- деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

59-й классы

– анализировать, сравнивать, классифицировать и обобщать факты и явления;

– осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

– создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

вычитывать все уровни текстовой информации.

уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

Использование математических знаний для решения различных математических задач и оценки полученных результатов.

Совокупность умений по использованию доказательной математической речи.

Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

Умения использовать математические средства для изучения и описания реальных процессов и явлений.

Независимость и критичность мышления.

Воля и настойчивость в достижении цели.

Коммуникативные УУД:

59-й классы

– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

– в дискуссии уметь выдвинуть контраргументы;

– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

– уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и системно-деятельностного обучения.

Предметными результатами изучения предмета «Математика» являются следующие умения.

5-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание:

названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);

как образуется каждая следующая счётная единица;

названия и последовательность разрядов в записи числа;

названия и последовательность первых трёх классов;

сколько разрядов содержится в каждом классе;

соотношение между разрядами;

сколько единиц каждого класса содержится в записи числа;

как устроена позиционная десятичная система счисления;

единицы измерения величин (длина, масса, время, площадь), соотношения между ними;

десятичных дробях и правилах действий с ними;

- сравнивать десятичные дроби;

выполнять операции над десятичными дробями;

преобразовывать десятичную дробь в обыкновенную и наоборот;

округлять целые числа и десятичные дроби;

находить приближённые значения величин с недостатком и избытком;

выполнять приближённые вычисления и оценку числового выражения;

функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).

Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;

выполнять умножение и деление с 1000;

вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;

решать простые и составные текстовые задачи;

выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;

находить вероятности простейших случайных событий;

решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;

решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;

читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;

строить простейшие линейные, столбчатые и круговые диаграммы;

- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

6-й класс

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

раскладывать натуральное число на простые множители;

находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;

- отношениях и пропорциях; основном свойстве пропорции;

прямой и обратной пропорциональных зависимостях и их свойствах;

процентах;

целых и дробных отрицательных числах; рациональных числах;

правиле сравнения рациональных чисел;

правилах выполнения операций над рациональными числами; свойствах операций.

делить число в данном отношении;

находить неизвестный член пропорции;

находить данное количество процентов от числа и число по известному количеству процентов от него;

находить, сколько процентов одно число составляет от другого;

увеличивать и уменьшать число на данное количество процентов;

решать текстовые задачи на отношения, пропорции и проценты;

сравнивать два рациональных числа;

выполнять операции над рациональными числами, использовать свойства операций для упрощения вычислений;

решать комбинаторные задачи с помощью правила умножения;

находить вероятности простейших случайных событий;

решать простейшие задачи на осевую и центральную симметрию;

решать простейшие задачи на разрезание и составление геометрических фигур;

находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

7-й класс.

Алгебра

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

натуральных, целых, рациональных, иррациональных, действительных числах;

степени с натуральными показателями и их свойствах;

одночленах и правилах действий с ними;

многочленах и правилах действий с ними;

формулах сокращённого умножения;

тождествах; методах доказательства тождеств;

линейных уравнениях с одной неизвестной и методах их решения;

системах двух линейных уравнений с двумя неизвестными и методах их решения.

Выполнять действия с одночленами и многочленами;

узнавать в выражениях формулы сокращённого умножения и применять их;

раскладывать многочлены на множители;

выполнять тождественные преобразования целых алгебраических выражений;

доказывать простейшие тождества;

находить число сочетаний и число размещений;

решать линейные уравнения с одной неизвестной;

решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;

решать текстовые задачи с помощью линейных уравнений и систем;

находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

7-й класс.

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

основных геометрических понятиях: точка, прямая, плоскость, луч, отрезок, ломаная, многоугольник;

определении угла, биссектрисы угла, смежных и вертикальных углов;

свойствах смежных и вертикальных углов;

определении равенства геометрических фигур; признаках равенства треугольников;

геометрических местах точек; биссектрисе угла и серединном перпендикуляре к отрезку как геометрических местах точек;

определении параллельных прямых; признаках и свойствах параллельных прямых;

аксиоме параллельности и её краткой истории;

формуле суммы углов треугольника;

определении и свойствах средней линии треугольника;

теореме Фалеса.

Применять свойства смежных и вертикальных углов при решении задач;

находить в конкретных ситуациях равные треугольники и доказывать их равенство;

устанавливать параллельность прямых и применять свойства параллельных прямых;

применять теорему о сумме углов треугольника;

использовать теорему о средней линии треугольника и теорему Фалеса при решении задач;

находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

8-й класс.

Алгебра

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

алгебраической дроби; основном свойстве дроби;

правилах действий с алгебраическими дробями;

степенях с целыми показателями и их свойствах;

стандартном виде числа;

функциях , , , их свойствах и графиках;

понятии квадратного корня и арифметического квадратного корня;

свойствах арифметических квадратных корней;

функции , её свойствах и графике;

формуле для корней квадратного уравнения;

теореме Виета для приведённого и общего квадратного уравнения;

основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;

методе решения дробных рациональных уравнений;

основных методах решения систем рациональных уравнений.

Сокращать алгебраические дроби;

выполнять арифметические действия с алгебраическими дробями;

использовать свойства степеней с целыми показателями при решении задач;

записывать числа в стандартном виде;

выполнять тождественные преобразования рациональных выражений;

строить графики функций , , и использовать их свойства при решении задач;

вычислять арифметические квадратные корни;

применять свойства арифметических квадратных корней при решении задач;

строить график функции и использовать его свойства при решении задач;

решать квадратные уравнения;

применять теорему Виета при решении задач;

решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;

решать дробные уравнения;

решать системы рациональных уравнений;

решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;

находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

8-й класс.

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

определении параллелограмма, ромба, прямоугольника, квадрата; их свойствах и признаках;

определении трапеции; элементах трапеции; теореме о средней линии трапеции;

определении окружности, круга и их элементов;

теореме об измерении углов, связанных с окружностью;

определении и свойствах касательных к окружности; теореме о равенстве двух касательных, проведённых из одной точки;

определении вписанной и описанной окружностей, их свойствах;

определении тригонометрические функции острого угла, основных соотношений между ними;

приёмах решения прямоугольных треугольников;

тригонометрических функциях углов от 0 до 180°;

теореме косинусов и теореме синусов;

приёмах решения произвольных треугольников;

формулах для площади треугольника, параллелограмма, трапеции;

теореме Пифагора.

Применять признаки и свойства параллелограмма, ромба, прямоугольника, квадрата при решении задач;

решать простейшие задачи на трапецию;

находить градусную меру углов, связанных с окружностью; устанавливать их равенство;

применять свойства касательных к окружности при решении задач;

решать задачи на вписанную и описанную окружность;

выполнять основные геометрические построения с помощью циркуля и линейки;

находить значения тригонометрических функций острого угла через стороны прямоугольного треугольника;

применять соотношения между тригонометрическими функциями при решении задач; в частности, по значению одной из функций находить значения всех остальных;

решать прямоугольные треугольники;

сводить работу с тригонометрическими функциями углов от 0 до 180° к случаю острых углов;

применять теорему косинусов и теорему синусов при решении задач;

решать произвольные треугольники;

находить площади треугольников, параллелограммов, трапеций;

применять теорему Пифагора при решении задач;

находить простейшие геометрические вероятности;

находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

9-й класс.

Алгебра

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

свойствах числовых неравенств;

методах решения линейных неравенств;

свойствах квадратичной функции;

методах решения квадратных неравенств;

методе интервалов для решения рациональных неравенств;

методах решения систем неравенств;

свойствах и графике функции при натуральном n;

определении и свойствах корней степени n;

степенях с рациональными показателями и их свойствах;

определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;

определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;

формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.

Использовать свойства числовых неравенств для преобразования неравенств;

доказывать простейшие неравенства;

решать линейные неравенства;

строить график квадратичной функции и использовать его при решении задач;

решать квадратные неравенства;

решать рациональные неравенства методом интервалов;

решать системы неравенств;

строить график функции при натуральном nи использовать его при решении задач;

находить корни степени n;

использовать свойства корней степени nпри тождественных преобразованиях;

находить значения степеней с рациональными показателями;

решать основные задачи на арифметическую и геометрическую прогрессии;

находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;

находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

9-й класс.

Геометрия

Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:

признаках подобия треугольников;

теореме о пропорциональных отрезках;

свойстве биссектрисы треугольника;

пропорциональных отрезках в прямоугольном треугольнике;

пропорциональных отрезках в круге;

теореме об отношении площадей подобных многоугольников;

свойствах правильных многоугольников; связи между стороной правильного многоугольника и радиусами вписанного и описанного кругов;

определении длины окружности и формуле для её вычисления;

формуле площади правильного многоугольника;

определении площади круга и формуле для её вычисления; формуле для вычисления площадей частей круга;

правиле нахождения суммы и разности векторов, произведения вектора на скаляр; свойства этих операций;

определении координат вектора и методах их нахождения;

правиле выполнений операций над векторами в координатной форме;

определении скалярного произведения векторов и формуле для его нахождения;

связи между координатами векторов и координатами точек;

векторным и координатным методах решения геометрических задач.

формулах объёма основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса.

Применять признаки подобия треугольников при решении задач;

решать простейшие задачи на пропорциональные отрезки;

решать простейшие задачи на правильные многоугольники;

находить длину окружности, площадь круга и его частей;

выполнять операции над векторами в геометрической и координатной форме;

находить скалярное произведение векторов и применять его для нахождения различных геометрических величин;

решать геометрические задачи векторным и координатным методом;

применять геометрические преобразования плоскости при решении геометрических задач;

находить объёмы основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса;

находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;

создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.

11.5. Математика и информатика

Изучение предметной области "Математика и информатика" должно

обеспечить:

осознание значения математики и информатики в повседневной жизни человека;

формирование представлений о социальных, культурных и исторических факторах становления математической науки;

понимание роли информационных процессов в современном мире;

формирование представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления.

В результате изучения предметной области "Математика и информатика" обучающиеся развивают логическое и математическое мышление, получают представление о математических моделях; овладевают математическими рассуждениями; учатся применять математические знания при решении различных задач и оценивать полученные результаты; овладевают умениями решения учебных задач; развивают математическую интуицию; получают представление об основных информационных процессах в реальных ситуациях

Предметные результаты изучения предметной области "Математика и информатика" должны отражать:

Математика. Алгебра. Геометрия. Информатика:

1) формирование представлений о математике как о методе познания действительности, позволяющем описывать и изучать реальные процессы и явления:

- осознание роли математики в развитии России и мира;

- возможность привести примеры из отечественной и всемирной истории математических открытий и их авторов;

2) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования, доказательства математических утверждений:

- оперирование понятиями: множество, элемент множества, подмножество, принадлежность, нахождение пересечения, объединения подмножества в простейших ситуациях;

- решение сюжетных задач разных типов на все арифметические действия;

- применение способа поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

- составление плана решения задачи, выделение этапов ее решения, интерпретация вычислительных результатов в задаче, исследование полученного решения задачи;

- нахождение процента от числа, числа по проценту от него, нахождения процентного отношения двух чисел, нахождения процентного снижения или процентного повышения величины;

- решение логических задач;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений:

- оперирование понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, иррациональное число;

- использование свойства чисел и законов арифметических операций с числами при выполнении вычислений;

- использование признаков делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении задач;

- выполнение округления чисел в соответствии с правилами;

- сравнение чисел;

- оценивание значения квадратного корня из положительного целого числа;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умения моделировать реальные ситуации на языке алгебры, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат:

- выполнение несложных преобразований для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

- выполнение несложных преобразований целых, дробно рациональных выражений и выражений с квадратными корнями; раскрывать скобки, приводить подобные слагаемые, использовать формулы

сокращенного умножения;

- решение линейных и квадратных уравнений и неравенств, уравнений и неравенств, сводящихся к линейным или квадратным, систем уравнений и неравенств, изображение решений неравенств и их систем на числовой прямой;

5) овладение системой функциональных понятий, развитие умения использовать функционально-графические представления для решения различных математических задач, для описания и анализа реальных зависимостей:

- определение положения точки по ее координатам, координаты точки по ее положению на плоскости;

- нахождение по графику значений функции, области определения, множества значений, нулей функции, промежутков знакопостоянства, промежутков возрастания и убывания, наибольшего и наименьшего значения функции;

- построение графика линейной и квадратичной функций;

- оперирование на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

- использование свойств линейной и квадратичной функций и их графиков при решении задач из других учебных предметов;

6) овладение геометрическим языком; развитие умения использовать его для описания предметов окружающего мира; развитие пространственных представлений, изобразительных умений, навыков геометрических построений:

- оперирование понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырехугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар; изображение изучаемых фигур от руки и с помощью линейки и циркуля;

- выполнение измерения длин, расстояний, величин углов с помощью инструментов для измерений длин и углов;

7) формирование систематических знаний о плоских фигурах и их свойствах, представлений о простейших пространственных телах; развитие умений моделирования реальных ситуаций на языке геометрии, исследования построенной модели с использованием геометрических понятий и теорем, аппарата алгебры, решения геометрических и практических задач:

- оперирование на базовом уровне понятиями: равенство фигур, параллельность и перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция;

- проведение доказательств в геометрии;

- оперирование на базовом уровне понятиями: вектор, сумма векторов, произведение вектора на число, координаты на плоскости;

- решение задач на нахождение геометрических величин (длина и расстояние, величина угла, площадь) по образцам или алгоритмам;

8) овладение простейшими способами представления и анализа статистических данных;

формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о простейших вероятностных моделях; развитие умений извлекать информацию, представленную в таблицах, на диаграммах, графиках, описывать и анализировать массивы числовых данных с помощью подходящих статистических характеристик, использовать понимание вероятностных свойств окружающих явлений при принятии решений:

- формирование представления о статистических характеристиках, вероятности случайного события;

- решение простейших комбинаторных задач;

- определение основных статистических характеристик числовых наборов;

- оценивание и вычисление вероятности события в простейших случаях;

наличие представления о роли практически достоверных и маловероятных событий, о роли закона больших чисел в массовых явлениях;

- умение сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

9) развитие умений применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, компьютера, пользоваться оценкой и прикидкой при практических расчетах:

- распознавание верных и неверных высказываний;

- оценивание результатов вычислений при решении практических задач;

- выполнение сравнения чисел в реальных ситуациях;

- использование числовых выражений при решении практических задач и задач из других учебных предметов;

- решение практических задач с применением простейших свойств фигур;

- выполнение простейших построений и измерений на местности, необходимых в реальной жизни;

10) формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;

11) формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;

12) развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;

13) формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;

14) формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права;

15) для слепых и слабовидящих обучающихся:

- владение правилами записи математических формул и специальных знаков рельефно-точечной системы обозначений Л. Брайля;

- владение тактильно-осязательным способом обследования и восприятия рельефных изображений предметов, контурных изображений геометрических фигур и т.п.;

- умение читать рельефные графики элементарных функций на координатной плоскости, применять специальные приспособления для рельефного черчения;

- владение основным функционалом программы невизуального доступа к информации на экране ПК, умение использовать персональные тифлотехнические средства информационно-коммуникационного доступа слепыми обучающимися;

16) для обучающихся с нарушениями опорно-двигательного аппарата:

- владение специальными компьютерными средствами представления и анализа данных и умение использовать персональные средства доступа с учетом двигательных, речедвигательных и сенсорных нарушений;

- умение использовать персональные средства доступа".

Содержание учебного предмета

Арифметика

Натуральные числа

Ряд натуральных чисел. Десятичная запись натуральных чисел. Округление натуральных чисел. Координатный луч. Сравнение натуральных чисел. Сложение и вычитание натуральных чисел. Свойства сложения.

Умножение и деление натуральных чисел. Свойства умножения. Деление с остатком. Степень числа с натуральным показателем.

Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.

Простые и составные числа. Разложение чисел на простые множители.

Решение текстовых задач арифметическими способами.

Дроби

Обыкновенные дроби. Основное свойство дроби. Нахождение дроби от числа. Нахождение числа по значению его дроби. Правильные и неправильные дроби. Смешанные числа. Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.

Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробями. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Бесконечные периодические десятичные дроби. Десятичное приближение обыкновенной дроби.

Отношение. Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб. Пропорция. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости.

Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.

Решение текстовых задач арифметическими способами.

Рациональные числа

Положительные, отрицательные числа и число 0. Целые числа. Противоположные числа. Модуль числа.

Рациональные числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства сложения и умножения рациональных чисел.

Координатная прямая. Координатная плоскость.

Величины. Зависимости между величинами

Единицы длины, площади, объема, массы, времени, скорости. Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам.

Числовые и буквенные выражения. Уравнения

Числовые выражения. Значение числового выражения. Порядок действий в числовых выражениях. Буквенные выражения. Раскрытие скобок. Подобные слагаемые, приведение подобных слагаемых. Формулы.

Уравнения. Корень уравнения. Основные свойства уравнений. Решение текстовых задач с помощью уравнений.

Элементы статистики, вероятности. Комбинаторные задачи

Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.

Среднее арифметическое. Среднее значение величины.

Случайное событие. Достоверное и невозможное события. Вероятность случайного события. Решение комбинаторных задач.

Геометрические фигуры. Измерения геометрических величин

Отрезок. Построение отрезка. Длина отрезка, ломаной. Измерение длины отрезка, построение отрезка заданной длины. Периметр многоугольника. Плоскость. Прямая. Луч.

Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Прямоугольник. Квадрат. Треугольник. Виды треугольников. Окружность и круг. Длина окружности. Число π.

Равенство фигур. Понятие и свойства площади. Площадь прямоугольника и квадрата. Площадь круга. Ось симметрии фигуры.

Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, пирамида, цилиндр, конус, шар, сфера. Примеры разверток многогранников, цилиндра, конуса. Понятие и свойства объема. Объем прямоугольного параллелепипеда и куба.

Взаимное расположение двух прямых. Перпендикулярные прямые. Параллельные прямые.

Осевая и центральная симметрии.

Математика в историческом развитии

Римская система счисления. Позиционные системы счисления. Обозначение цифр в Древней Руси. Старинные меры длины. Введение метра как единицы длины. Метрическая система мер в России, в Европе. История формирования математических символов. Дроби в Вавилоне, Египте, Риме, на Руси. Открытие десятичных дробей. Мир простых чисел. Золотое сечение. Число нуль. Появление отрицательных чисел.

Алгебра

Алгебраические выражения

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразование выражений.

Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы квадрат разности, куб суммы и куб разности. Формула разности квадратов, формулы суммы кубов и разности кубов. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена.

Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями.

Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычитаниях.

Уравнения и неравенства

Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение, формула корней квадратного уравнения. Решение рациональных уравнений. Примеры решения уравнений высших степеней: методы замены переменной, разложение на множители.

Уравнение с двумя переменными; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Примеры решения нелинейных систем. Примеры решения уравнений в целых числах.

Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Примеры решения дробно-рациональных неравенств.

Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.

Переход от словесной формулировки соотношений между величинами к алгебраической. Решение текстовых задач алгебраическим способом.

Числовые последовательности

Понятие последовательности. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий.

Сложные проценты.

Числовые функции

Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций.

Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем.

Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост; числовые функции, описывающие эти процессы.

Параллельный перенос графика вдоль осей координат и симметрия относительно осей.

Координаты

Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.

Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке.

Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем.

Геометрия

Простейшие геометрические фигуры

Точка, прямая. Отрезок, луч. Угол. Виды углов. Смеж­ные и вертикальные углы. Биссектриса угла.

Пересекающиеся и параллельные прямые. Перпендику­лярные прямые. Признаки параллельности прямых. Свой­ства параллельных прямых. Перпендикуляр и наклонная к прямой.

Многоугольники

Треугольники. Виды треугольников. Медиана, биссек­триса, высота, средняя линия треугольника. Признаки ра­венства треугольников. Свойства и признаки равнобедрен­ного треугольника. Серединный перпендикуляр отрезка. Сумма углов треугольника. Внешние углы треугольника. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Теорема Пифагора.

Подобные треугольники. Признаки подобия треугольни­ков. Точки пересечения медиан, биссектрис, высот треуголь­ника, серединных перпендикуляров сторон треугольника. Свойство биссектрисы треугольника. Теорема Фалеса. Метри­ческие соотношения в прямоугольном треугольнике. Синус, косинус, тангенс, котангенс острого угла прямоугольного тре­угольника и углов от 0 до 180. Формулы, связывающие си­нус, косинус, тангенс, котангенс одного и того же угла. Реше­ние треугольников. Теорема синусов и теорема косинусов.

Четырёхугольники. Параллелограмм. Свойства и при­знаки параллелограмма. Прямоугольник, ромб, квадрат, их свойства и признаки. Трапеция. Средняя линия трапе­ции и её свойства.

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Геометрические построения

Окружность и круг. Элементы окружности и круга. Цен­тральные и вписанные углы. Касательная к окружности и её свойства. Взаимное расположение прямой и окружно­сти. Описанная и вписанная окружности треугольника. Вписанные и описанные четырёхугольники, их свойства и признаки. Вписанные и описанные многоугольники.

Геометрическое место точек (ГМТ). Серединный перпен­дикуляр отрезка и биссектриса угла как ГМТ.

Геометрические построения циркулем и линейкой. Основ­ные задачи на построение: построение угла, равного данно­му, построение серединного перпендикуляра данного отрез­ка, построение прямой, проходящей через данную точку и перпендикулярной данной прямой, построение биссектри­сы данного угла. Построение треугольника по заданным эле­ментам. Метод ГМТ в задачах на построение.

Измерение геометрических величин

Длина отрезка. Расстояние между двумя точками. Рас­стояние от точки до прямой. Расстояние между параллель­ными прямыми.

Периметр многоугольника.

Длина окружности. Длина дуги окружности.

Градусная мера угла. Величина вписанного угла.

Понятия площади многоугольника. Равновеликие фигу­ры. Нахождение площади квадрата, прямоугольника, па­раллелограмма, треугольника, трапеции.

Понятие площади круга. Площадь сектора. Отношение площадей подобных фигур.

Декартовые координаты на плоскости

Формула расстояния между двумя точками. Координаты середины отрезка. Уравнение фигуры. Уравнения окружно­сти и прямой. Угловой коэффициент прямой.

Векторы

Понятие вектора. Модуль (длина) вектора. Равные векто­ры. Коллинеарные векторы. Координаты вектора. Сложе­ние и вычитание векторов. Умножение вектора на число. Скалярное произведение векторов. Косинус угла между двумя векторами.

Геометрические преобразования

Понятие о преобразовании фигуры. Движение фигуры. Виды движения фигуры: параллельный перенос, осевая симметрия, центральная симметрия, поворот. Равные фи­гуры. Гомотетия. Подобие фигур.

Элементы логики

Определение. Аксиомы и теоремы. Доказательство. До­казательство от противного. Теорема, обратная данной. Не­обходимое и достаточное условия. Употребление логиче­ских связок если..., то ..., тогда и только тогда.

Геометрия в историческом развитии

Из истории геометрии, «Начала» Евклида. История пя­того постулата Евклида. Тригонометрия — наука об измере­нии треугольников. Построение правильных многоугольни­ков. Как зародилась идея координат.

Н.И. Лобачевский. Л. Эйлер. Фалес. Пифагор.

3) Тематическое планирование.

Математика 5 класс

5 часов в неделю, всего 175 часов

Содержание учебного материала

Количество часов

Натуральные числа

20

Сложение и вычитание натуральных чисел

33

Умножение и деление натуральных чисел

37

Обыкновенные дроби

18

Десятичные дроби

48

Повторение и систематизация учебного материала

19

Итого

175

Математика 6 класс

5 часов в неделю, всего 175 часов

Содержание учебного материала

Количество часов

Делимость натуральных чисел

17

Обыкновенные дроби

38

Отношения и пропорции

28

Рациональные числа и действия над ними

72

Повторение и систематизация учебного материала

20

Итого

175

Алгебра 7 класс

3 часа в неделю, всего 105 часов.

Содержание учебного материала

Количество

часов

Линейное уравнение с одной переменной

15

Целые выражения

52

Функции

12

Системы линейных уравнений с двумя переменными

20

Повторение и систематизация учебного материала

6

Итого

105

Алгебра. 8 класс

3 часа в неделю, всего 105 часов

Содержание учебного материала

Количество часов

Рациональные выражения

44

Квадратные корни. Действительные числа

25

Квадратные уравнения

26

Повторение и систематизация учебного материала

10

Итого

105

 

Алгебра. 9 класс

3 часа в неделю, всего 102 часов

Содержание учебного материала

Количество часов

Неравенства

20

Квадратичная функция

38

Элементы прикладной математики

20

Числовые последовательности

17

Повторение и систематизация учебного материала

7

Итого

102

Геометрия 7 класс

2 часа в неделю, всего 70 часов

Содержание учебного материала

Количество часов

Простейшие геометрические фигуры и их свойства

15

Треугольники

18

Параллельные прямые. Сумма углов треугольника

16

. Окружность и круг. Геометрические построения

16

Обобщение и систематизация знаний учащихся

5

Итого

70

Геометрия 8 класс

2 часа в неделю, всего 70 часов

Содержание учебного материала

Количество часов

Четырёхугольники

22

Подобие треугольников

16

Решение прямоугольных треугольников

14

Многоугольники. Площадь многоугольника

10

Повторение и систематизация учебного материала

8

Итого

70

Геометрия 9 класс

2 часа в неделю, всего 68 часов.

Содержание учебного материала

Количество часов

Решение треугольников

16

Правильные многоугольники

8

Декартовы координаты на плоскости

11

Векторы

12

Геометрические преобразования

13

Повторение и систематизация учебного материала

8

Итого

68

Опубликовано в группе «Математическая мозаика»

Комментарии (1)

Тахтаракова Валентина Анатольевна, 28.11.17 в 13:54 1 Ответить Пожаловаться
Спасибо. Добавила в избранное.
Чтобы написать комментарий необходимо авторизоваться.