Урок алгебры в 8 классе «Решение задач с помощью рациональных уравнений»

1
0
Материал опубликован 24 October 2020

Технологическая карта урока алгебры в 8 «в» классе

Тип урока: Изучение нового материала



Тема урока


«Решение задач с помощью рациональных уравнений»


Цель урока

Обучающая:

закрепление понятия дробного рационального уравнения;

составление математической модели задачи, перевод условия задачи с обычного языка на математический;

проверка уровня усвоения темы путем проведения проверочной работы.

Развивающая:

развитие умения правильно оперировать полученными знаниями, логически мыслить;

развитие интеллектуальных умений;

развитие умения принимать решения.

Воспитательная:

воспитание познавательного интереса к предмету;

воспитание самостоятельности при решении учебных задач;

воспитание воли и упорства для достижения конечных результатов.

Основное содержание темы, термины и понятия

Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям.


Планируемые образовательные результаты


Личностные

Метапредметные

Предметные

-самоопределение, и смыслообразование;

-умение приводить примеры;

-находчивость и активность при решении задач;

-умение видеть математическую задачу в контексте проблемной ситуации и других дисциплинах, в окружающей жизни;

-находить в различных источниках информацию, необходимую для решения математической проблемы;

-продолжить работу с квадратными уравнениями;

-умение работать с математическим текстом;

-грамотно использовать математическую терминологию и символику.





Тип урока

Методы работы

Ресурсы

Изучение нового материала.

По источникам знаний: словесные, наглядные;

По степени взаимодействия учитель-ученик: эвристическая беседа;

Относительно характера познавательной деятельности: репродуктивный, частично-поисковый.

Проектор, компьютер, учебник «Алгебра» 8 класс: учеб. Для общеобразоват. организаций/ С. М. Никольский, М. К. Потапов, Н Н. Решетников и др. – 5-е изд. – М.: Просвещение, 2018. – 303 с., дидактические материалы.


Этапы урока

Задачи этапа

Деятельность учителя

Деятельность учащихся

УУД

1. Организационный момент

Создать благоприятный психологический настрой на работу

Приветствие, проверка подготовленности к учебному занятию, организация внимания детей.

Здравствуйте, ребята. Ещё начиная с начальной школы вы учились решать задачи. Для этого с каждым годом вы обучались всё новым и новым методам и способам решения. Сегодня мы познакомимся с задачами, решение которых сводится к дробным рациональным уравнениям.

Мотивация (самоопределение) к учебной деятельности.

- Работать сегодня мы будем в группах. Вспомните правила работы в группах. (Прислушиваться к мнению соседа, работать дружно, помогать друг другу)


Включаются в деловой ритм урока.




Личностные: самоопределение.

Регулятивные: целеполагание.

Коммуникативные: планирование учебного сотрудничества с учителем и сверстниками.


2. Актуализация и фиксирование индивидуального затруднения в пробном учебном действии.

Актуализация опорных знаний и способов действий.

Фронтальный опрос, устная работа с классом.

Ответьте, пожалуйста, на следующие вопросы:

-Какие уравнения называются дробными рациональными?

-Расскажите алгоритм решения дробных рациональных уравнений.

Решение уравнений по группам.

I группа: t1603532046aa.gif (ответ: 2; 5/4)

II группа: t1603532046ab.gif (ответ: -2 )

III группа: t1603532046ac.gif (ответ: 1/3)


Называют какие уравнения называются дробными рациональными.

Рассказывают алгоритм решения дробных рациональных уравнений. Решают уравнения по группам.


На этапе идёт повторение изученного материала, необходимого для «открытия нового знания», и выявление затруднений в индивидуальной деятельности каждого учащегося. Формируются регулятивные УУД.

3. Объяснение нового материала.

Обеспечение мотивации учения детьми, принятие ими целей урока.

Прежде чем приступать к решению задачи необходимо несколько раз внимательно прочитать условие задачи, понять какую величину обозначить за неизвестную.

Из пункта А в пункт В, расстояние между которыми 50 км, одновременно выехали автомобилист и велосипедист. Известно, что в час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 4 часа позже автомобилиста.

Проблема: как найти скорость велосипедиста?



-Как вы думаете, сколько корней имеет данное уравнение?




Цель урока

-Какая цель нашего урока?



Итак, тема нашего урока созвучна цели урока

-как называется тема нашего урока?

Записываем в тетрадь тему урока.

Составляют математическую модель:

х - скорость велосипедиста


S

v

t

Вел.

50км

X км/ч

t1603532046ad.gif

Авт.

50км

Х+40 км/ч

t1603532046ae.gif

t1603532046af.gif -t1603532046ag.gif =4

t1603532046ah.gif -4=0

t1603532046ai.gif

ОДЗ: t1603532046aj.gif ≠0

Хt1603532046ak.gif х≠-40

2000-t1603532046al.gif =0 /(-4)

t1603532046am.gif +40х-500=0

D=1600+2000=3600=t1603532046an.gif

х1=t1603532046ao.gif =10 км/ч

х2=t1603532046ap.gif =-50 км/ч – не подходит

v велосипедиста 10 км/ч


Цель урока: мы будем решать задачи с помощью рациональных уравнений.



Тема урока: «Решение задач с помощью рациональных уравнений».

Регулятивные: целеполагание.

Коммуникативные: постановка вопросов.

Познавательные: самостоятельное выделение-формулирование познавательной цели; логические - формулирование проблемы.

4.Первичное закрепление с проговариванием во внешней речи

Установление правильности и осознанности изучения темы.

Выявление пробелов первичного осмысления изученного материала, коррекция выявленных пробелов, обеспечение закрепления в памяти детей знаний и способов действий, которые им необходимы для самостоятельной работы по новому материалу.

Работа в группах.

Из города в село, находящееся от него на расстоянии 120 км, выехали одновременно два автомобиля. Скорость одного была на 20 км/ч больше скорости другого, и поэтому он пришел к месту назначения на 1 ч раньше. Найдите скорость каждого автомобиля.


Работают парами вместе обсуждают решение задачи.

Учатся доносить свою позицию до других (строить высказывания, пользуясь математической терминологией), слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения, при необходимости отстаивать свою точку зрения, аргументировать её.


Формирование умений в использовании опорной схемы для решения задач.







Регулятивные: контроль, оценка, коррекция.

Познавательные: умение структуризировать знания, выбор наиболее эффективных способов решения задач, рефлексия способов и условий действия.

Коммуникативные: управление поведением партнера, контроль, коррекция, оценка действий партнера.

5. Выполнение контролирующего задания по изученной теме и включение в систему знаний повторение

Выявление качества и уровня усвоения знаний и способов действий, а также выявление недостатков в знаниях и способах действий, установление причин выявленных недостатков.

Самостоятельное решение задач по группам.

Велосипедист проехал 5 км по лесной дороге и 7 км по шоссе, затратив на весь путь 1ч. По шоссе он ехал со скоростью на 4 км/ч большей, чем по лесу. С какой скоростью велосипедист ехал по лесной дороге?

Турист прошел по шоссе 3 км, а по проселочной дороге 6 км, затратив на весь путь 2ч. С какой скоростью шел турист по проселочной дороге, если известно, что по шоссе он шел со скоростью, на 2 км/ч большей, чем по проселочной дороге?


Самостоятельное решение .

Учатся находить информацию в тексте задачи, выделять главное, применять новые знания в другой ситуации





Самопроверка.

На данном этапе предлагаются не только задания, при решении которых используется новый алгоритм, но и выполняются задания, в которых новое знание используется вместе с ранее изученным. Выполняются универсальные логические действия: анализ, синтез.

6. Подведение итогов урока.

Дать качественную оценку работы класса и отдельных обучаемых

-Что изучили сегодня на уроке?





Оценить отдельных учащихся

Алгоритм решения задач на движение в одном направлении, если известны расстояние, соотношение между скоростями и время отставания

Регулятивные: оценка-осознание уровня и качества усвоения; контроль.

7. Информация о домашнем задании

Обеспечение понимания детьми цели, содержания и способов выполнения домашнего задания.

Прочитать п.5.6 из учебника, разобрать примеры.

Решить в тетрадях № 328.


Составить и решить задачу с подобными данными (для сильных учащихся)


Д/з включает в себя как репродуктивное задание, так и творческое, что позволяет вызвать у детей познавательный интерес. Формируются познавательные УУД,

8. Рефлексия

Инициировать рефлексию детей по поводу психоэмоционального состояния, мотивации их собственной деятельности и взаимодействия с учителем и другими детьми в классе.

Если вы считаете, что поняли тему урока, то наклейте розовый листочек на прямоугольник.

Если вы считаете, что не достаточно усвоили материал, то наклейте голубой листочек.

Если вы считаете, что не поняли тему урока, то наклейте желтый листочек.

Учатся определять степень успешности выполнения своей работы и работы всех. Понимать причины своего неуспеха и находить способы выхода из этой ситуации

Коммуникативные: умение с достаточной полнотой и точностью выражать свои мысли;

Познавательные: рефлексия.




в формате Microsoft Word (.doc / .docx)
Комментарии
Комментариев пока нет.

Похожие публикации