Урок биологии на тему «Сходство зародышей и эмбриональная дивергенция признаков. Биогенетический закон» (10–11 классы)
Методические разработки уроков 10-11класс
Тип урока - комбинированный
Методы: частично-поисковый, проблемного изложения, объяснительно-иллюстративный.
Цель:
- формирование у учащихся целостной системы знаний о живой природе, ее системной организации и эволюции;
-умения давать аргументированную оценку новой информации по биологическим вопросам;
-воспитание гражданской ответственности, самостоятельности, инициативности
Задачи:
Образовательные: о биологических системах (клетка, организм, вид, экосистема); истории развития современных представлений о живой природе; выдающихся открытиях в биологической науке; роли биологической науки в формировании современной естественнонаучной картины мира; методах научного познания;
Развитие творческих способностей в процессе изучения выдающихся достижений биологии, вошедших в общечеловеческую культуру; сложных и противоречивых путей развития современных научных взглядов, идей, теорий, концепций, различных гипотез (о сущности и происхождении жизни, человека) в ходе работы с различными источниками информации;
Воспитание убежденности в возможности познания живой природы, необходимости бережного отношения к природной среде, собственному здоровью; уважения к мнению оппонента при обсуждении биологических проблем
ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОБУЧЕНИЯ- УУД
Личностные результаты обучения биологии:
1. воспитание российской гражданской идентичности: патриотизма, любви и уважения к Отечеству, чувства гордости за свою Родину; осознание своей этнической принадлежности; усвоение гуманистических и традиционных ценностей многонационального российского общества; воспитание чувства ответственности и долга перед Родиной;
2. формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;
Метапредметные результаты обучения биологии:
1. умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
2. овладение составляющими исследовательской и проектной деятельности, включая умения видеть проблему, ставить вопросы, выдвигать гипотезы;
3. умение работать с разными источниками биологической информации: находить биологическую информацию в различных источниках (тексте учебника, научно популярной литературе, биологических словарях и справочниках), анализировать и
оценивать информацию;
Познавательные: выделение существенных признаков биологических объектов и процессов; приведение доказательств (аргументация) родства человека с млекопитающими животными; взаимосвязи человека и окружающей среды; зависимости здоровья человека от состояния окружающей среды; необходимости защиты окружающей среды; овладение методами биологической науки: наблюдение и описание биологических объектов и процессов; постановка биологических экспериментов и объяснение их результатов.
Регулятивные: умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции).
Коммуникативные: формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, понимание особенностей гендерной социализации в подростковом возрасте, общественно полезной, учебно-исследовательской, творческой и других видов деятельности.
Технологии: Здоровьесбережения, проблемного, развивающего обучения, групповой деятельности
Приемы: анализ, синтез, умозаключение, перевод информации с одного вида в другой, обобщение.
Познакомить учащихся с сущностью и проявлением биогенетического закона; историей открытия этого закона; значением закона для выяснения родственных связей между организмами.
Зародыши проявляют известное общее сходство в пределах типа.
На различных этапах эмбрионального развития возможно появление новых признак
Изменения у зародышей могут носить характер перестройки, надстройки или замены предкового признака.
Онтогенез – это индивидуальное развитие, комплекс процессов развития отдельной особо от образования зиготы и до смерти. Развитие происходит благодаря реализации генетическоцй информации полученной от родителей. Существенное влияние на ее реализацию оказывают условия окружающей среды. Филогенез –это историческое развитие вида, эволюционное развитие организмов. Оба процесса тесно связаны. Зная направления и преобразования органов и их систем в процессе исторического развития, можно понять и объяснить возникающие в процессе эмбриогенеза аномалии развития.
Связь отногенеза и филогенеза отразилась в ряде биологических законов и закномерностей.В 1828 Карл Бэр сформулировал три закона:
1. Закон Зародышевого сходства – зародыш какого-либо высшего животного не бывает похож на другое животное, но похож на его эмбрион
2. закон последовательного появления признаков – более общие признаки характерные для данной крупной группы животных выявляются у их зародышей раньше чем признаки более специальные
3. закон мэбриональной дивергенции – каждый зародыш данной формы животных не проходжит через другие формы а постепенно обособляется от них.
Объяснить эти законы можно так что на ранних этапах эмбриогенеза зародыши животных разных классов позвоночных ( например рыбы птицы млекопитающие) похожжи между собой. Со временем между ними появляются различия в пределах классов, а дальше – в пределах отрядов ( пример: зародыши свиньи и человека)
Закон зародышевого сходства К. Бэра
В 1828 г. Карл фон Бэр сформулировал закономерность, которую называют Законом Бэра: "Чем более ранние стадии индивидуального развития сравниваются, тем больше сходства удается обнаружить". Сопоставляя стадии развития зародышей разных видов и классов хордовых, К. Бэр сделал следующие выводы.
- Эмбрионы животных одного типа на ранних стадиях развития сходны.
-Они последовательно переходят в своем развитии от более общих признаков типа ко все более частным. В последнюю очередь развиваются признаки, указывающие на принадлежность эмбриона к определенному роду, виду, и, наконец, индивидуальные черты.
- Эмбрионы разных представителей одного типа постепенно обособляются друг от друга.
Развитие эволюционной идеи в последующем позволило объяснить сходство ранних зародышей их историческим родством, а приобретение ими все более частных черт с постепенным обособлением друг от друга - действительным обособлением соответствующих классов, отрядов, семейств, родов и видов в процессе эволюции.
Зародышевое сходство объясняется теперь действительным родством организмов, а их постепенное расхождение (эмбриональная дивергенция) служит очевидным отражением исторического расхождения данных форм (филогенетической дивергенции). Следовательно, по индивидуальному развитию можно проследить историю данного вида.
Биологическая сущность биогенетического закона Э. Геккеля
Биогенетический закон Геккеля и теория филэмбриогенезов Северцова играют важную роль в развитии морфологии и самого эволюционного учения. Изучение индивидуального развития животных дало достаточно доказательств их исторического развития. Биогенетический закон является важной составной частью разработанного Э. Геккелем метода тройного параллелизма, с помощью которого производят реконструкцию филогенеза. Этот метод основан на сопоставлении данных морфологии, эмбриологии и палеонтологии. Морфологи при реконструкции филогенеза до сих пор пользуются геккелевским принципом, согласно которому онтогенез потомков кратко повторяет, рекапитулирует этапы филогенеза предков. Опираясь только на основной биогенетический закон, невозможно объяснить процесс эволюции: бесконечное повторение пройденного само по себе не рождает нового. Так как жизнь существует на Земле благодаря смене поколений конкретных организмов, эволюция ее протекает благодаря изменениям, происходящим в их онтогенезах. Эти изменения сводятся к тому, что конкретные онтогенезы отклоняются от пути, проложенного предковыми формами, и приобретают новые черты.
К таким отклонениям относятся, например, ценогенезы — приспособления, возникающие у зародышей или личинок и адаптирующие их к особенностям среды обитания. У взрослых организмов ценогенезы не сохраняются. Примерами ценогенезов являются роговые образования во рту личинок бесхвостых земноводных, облегчающие им питание растительной пищей. В процессе метаморфоза у лягушонка они исчезают и пищеварительная система перестраивается для питания насекомыми и червями. К ценогенезам у плацентарных млекопитающих и человека — плаценту с пуповиной.
Ценогенезы, проявляясь только на ранних стадиях онтогенеза, не изменяют типа организации взрослого организма, но обеспечивают более высокую вероятность выживания потомства. Они могут сопровождаться при этом уменьшением плодовитости и удлинением зародышевого или личиночного периода, благодаря чему организм в постэмбриональном или постличиночном периоде развития оказывается более зрелым и активным. Возникнув и оказавшись полезными, ценогенезы будут воспроизводиться в последующих поколениях.
Другой тип филогенетически значимых преобразований филогенеза — филэмбриогенезы. Они представляют собой отклонения от онтогенеза, характерного для предков, проявляющиеся в эмбриогенезе, но имеющие адаптивное значение у взрослых форм. Так, закладки волосяного покрова появляются у млекопитающих на очень ранних стадиях эмбрионального развития, но сам волосяной покров имеет значение только у взрослых организмов.
Такие изменения онтогенеза, будучи полезными, закрепляются естественным отбором и воспроизводятся в последующих поколениях. В основе этих изменений лежат те же механизмы, которые обусловливают врожденные пороки развития: нарушение пролиферации клеток, их перемещения, адгезии, гибели или дифференцировки. Однако от пороков их так же, как и ценогенезы, отличает адаптивная ценность, т.е. полезность и закрепленность естественным отбором в филогенезе.
В зависимости от того, на каких этапах эмбриогенеза и морфогенеза конкретных структур возникают изменения развития, имеющие значение филэмбриогенезов, различают три их типа.
1. Анаболии, или надставки, возникают после того, как орган практически завершил свое развитие, и выражаются в добавлении дополнительных стадий, изменяющих конечный результат. К анаболиям относят такие явления, как приобретение специфической формы тела камбалой лишь после того, как из икринки вылупляется малек, неотличимый от других рыб, а также появление изгибов позвоночника, сращение швов в мозговом черепе, окончательное перераспределение кровеносных сосудов в организме млекопитающих и человека.
2. Девиации — уклонения, возникающие в процессе морфогенеза органа. Примером может являться развитие сердца в онтогенезе млекопитающих, у которых оно рекапитулирует стадию трубки, двухкамерное и трехкамерное строение, но стадия формирования неполной перегородки, характерной для пресмыкающихся, вытесняется развитием перегородки, построенной и расположенной иначе и характерной только для млекопитающих. В развитии легких у млекопитающих также обнаруживается рекапитуляция ранних стадий предков, позднее морфогенез идет по-новому.
3. Архаллаксисы — изменения, обнаруживающиеся на уровне зачатков и выражающиеся в нарушении их расчленения, ранних дифференцировок или в появлении принципиально новых закладок. Классическим примером архаллаксиса являетсяразвитие волос у млекопитающих, закладка которых наступает на очень ранних стадиях развития и с самого начала отличается от закладок других придатков кожи позвоночных. По типу архаллаксиса возникают хорда у примитивных бесчерепных, хрящевой позвоночник у хрящевых рыб, развиваются нефроны вторичной почки у пресмыкающихся.
Ясно, что при эволюции за счет анаболии в онтогенезах потомков полностью реализуется основной биогенетический закон, т.е. происходят рекапитуляции всех предковых стадий развития. При девиациях ранние предковые стадии рекапитулируют, а более поздние заменяются развитием в новом направлении. Архаллаксисы полностью не допускают рекапитуляции в развитии данных структур, изменяя сами их зачатки.
В эволюции онтогенеза наиболее часто встречаются анаболии как филэмбриогенезы, лишь в малой степени изменяющие целостный процесс развития. Девиации как нарушения морфогенетического процесса в эмбриогенезе часто отметаются естественным отбором и встречаются поэтому значительно реже. Наиболее редко в эволюции проявляются архаллаксисы в связи с тем, что они изменяют весь ход эмбриогенеза, и если такие изменения затрагивают зачатки жизненно важных органов или органов, имеющих значение эмбриональных организационных центров, то часто они оказываются несовместимыми с жизнью.
Кроме ценогенезов и филэмбриогенезов в эволюции онтогенеза могут обнаруживаться еще и отклонения времени закладки органов — гетерохронии — и места их развития — гетеротопии. Как первые, так и вторые приводят к изменению взаимосоответствия развивающихся структур и проходят жесткий контроль естественного отбора. Сохраняются лишь те гетерохронии и гетеротопии, которые оказываются полезными. Примерами таких адаптивных гетерохронии являются сдвиги во времени закладок наиболее жизненно важных органов в группах, эволюционирующих по типу арогенеза. Так, у млекопитающих, и в особенности у человека, дифференцировка переднего мозга существенно опережает развитие других его отделов.
Гетеротопии приводят к формированию новых пространственных и функциональных связей между органами, обеспечивая в дальнейшем их совместную эволюцию. Так, сердце, располагающееся у рыб под глоткой, обеспечивает эффективное поступление крови в жаберные артерии для газообмена. Перемещаясь в загрудинную область у наземных позвоночных, оно развивается и функционирует уже в едином комплексе с новыми органами дыхания — легкими, выполняя и здесь в первую очередь функцию доставки крови к дыхательной системе для газообмена.
Гетерохронии и гетеротопии в зависимости от того, на каких стадиях эмбриогенеза и морфогенеза органов они проявляются, могут быть расценены как филэмбриогенезы разных типов. Гетеротопия семенника у человека из брюшной полости через паховый канал в мошонку, наблюдающаяся в конце эмбриогенеза после окончательного его формирования, — типичная анаболия.
Ценогенезы, филэмбриогенезы, а также гетеротопии и гетерохронии, оказавшись полезными, закрепляются в потомстве и воспроизводятся в последующих поколениях до тех пор, пока новые адаптивные изменения онтогенеза не вытеснят их, заменив собой. Благодаря этому онтогенез не только кратко повторяет эволюционный путь, пройденный предками, но и прокладывает новые направления филогенеза в будущем.
Сходство зародышей и эмбриональная дивергенция признаков |
Все многоклеточные организмы развиваются из оплодотворенного яйца. Процессы развития зародышей у животных, относящихся к одному типу, во многом сходны. У всех хордовых животных в эмбриональном периоде закладывается осевой скелет - хорда, возникает нервная трубка, в переднем отделе глотки образуются жаберные щели. План строения хордовых животных также одинаков. На ранних стадиях развития зародыши позвоночных чрезвычайно сходны. Эти факты подтверждают справедливость сформулированного К. Бэром закона зародышевого сходства: "Эмбрионы обнаруживают уже начиная с самых ранних стадий известное общее сходство в пределах типа". Сходство зародышей служит свидетельством общности их происхождения. В дальнейшем в строении зародышей проявляются признаки класса, рода, вида и, наконец, признаки, характерные для данной особи. Расхождение признаков зародышей в процессе развития называется эмбриональной дивергенцией и объясняется историей данного вида, отражая эволюцию той или иной систематической группы животных. Большое сходство зародышей на ранних стадиях развития и появление различий на более поздних стадиях имеют свое объяснение. Изучение эмбриональной изменчивости показывает, что изменчивы все стадии развития. Мутационный процесс затрагивает и гены обусловливающие особенности строения и обмена веществ у самых молодых эмбрионов. Но структуры возникающие у ранних эмбрионов (древние признаки, свойственные далеким предкам), играют весьма важную роль в процессах дальнейшего развития. Как указывалось, зачаток хорды индуцирует формирование нервной трубки, и его утрата приводит к прекращению развития. Примеры взаимодействия частей зародыша в развитии и функциональной важности структур, образующихся на ранних стадиях, многочисленны. Поэтому изменения на ранних стадиях обычно приводят к недоразвитию и гибели. Напротив, изменения на поздних стадиях могут быть благоприятными для организма и потому подхватываются естественным отбором. Появление в эмбриональном периоде развития современных животных признаков, свойственных далеким предкам, отражает эволюционные преобразования в строении органов. В своем развитии организм проходит одноклеточную стадию (стадия зиготы), что может рассматриваться как повторение филогенетической стадии первобытной амебы. У всех позвоночных, включая высших их представителей, закладывается хорда, которая далее замещается позвоночником, а у их предков, если судить по ланцетнику, хорда оставалась всю жизнь. В ходе эмбрионального развития птиц и млекопитающих, включая человека, появляются жаберные щели в глотке и соответствующие им перегородки. Факт закладки частей жаберного аппарата у зародышей наземных позвоночных объясняется их происхождением от рыбообразных предков, дышавших жабрами. Строение сердца человеческого зародыша в этот период напоминает строение этого органа у рыб: оно с одним предсердием и одним желудочком. У беззубых китов в эмбриональном периоде появляются зубы. Зубы эти не прорезываются, они разрушаются и рассасываются. Приведенные здесь и многие другие примеры указывают на глубокую связь между индивидуальным развитием организмов и их историческим развитием. Эта связь нашла свое выражение в биогенетическом законе, сформулированном Ф Мюллером и Э. Геккелем в XIX в.: онтогенез (индивидуальное развитие) каждой особи есть краткое и быстрое повторение филогенеза (исторического развития) вида, к которому эта особь относится. |
Вопросы и задания для повторения
Приведите примеры сходства черт строения у зародышей разных классов позвоночных животных.
Дайте объяснение возникновению у эмбрионов возникновения животных черт строения свойственных их далеким предкам
Выявление и описание признаков сходства зародышей человека и других позвоночных.
Биогенетический Закон
Биогенетический закон и эмбриональная изменчивость
Ресурсы
В. Б. ЗАХАРОВ, С. Г. МАМОНТОВ, Н. И. СОНИН, Е. Т. ЗАХАРОВА УЧЕБНИК «БИОЛОГИЯ» ДЛЯ ОБЩЕОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ (10-11класс) .
А. П. Плехов Биология с основами экологии. Серия «Учебники для вузов. Специальная литература».
Книга для учителя Сивоглазов В.И., Сухова Т.С. Козлова Т. А. Биология: общие закономерности.
Биология 100 самых важных тем В.Ю. Джамеев 2016 г.
Биология в схемах, терминах, таблицах" М.В. Железняк, Г.Н. Дерипаско, Изд. "Феникс"
Наглядный справочник. Биология. 10-11 классы. Красильникова
Образовательный портал http://cleverpenguin.ru/metabolizm-kletki
Школьный мир ИНФО http://www.shkolnymir.info/content/view/95/9
Природа мира
https://natworld.info/novosti/babochki-mogut-byt-starshe-cvetov-na-desjatki-millionov-let
FB.ru http://fb.ru/article/198783/hvostatyie-zemnovodnyie-samyie-yarkie-predstaviteli etogo-otryada
Биоуроки http://biouroki.ru/material/lab/2.html
Сайт YouTube: https://www.youtube.com /
Хостинг презентаций