Курс внеурочной деятельности «Юный математик» в 5 классе
Пояснительная записка
Курс внеурочной деятельности «Юный математик» в 5 классе является одной из важных составляющих работы с детьми, чья одаренность на настоящий момент может быть еще не проявившейся, а также просто способных детей, в отношении которых есть серьезная надежда на дальнейший качественный скачок в развитии их способностей. Темы программы непосредственно примыкают к основному курсу математики 5 класса. В результате занятий учащиеся должны приобрести навыки и умения решать более трудные и разнообразные задачи, а также задачи олимпиадного уровня.
Курс предназначен для развития математических способностей учащихся, для формирования элементов логической и алгоритмической грамотности, коммуникативных умений школьников с применением коллективных форм организации занятий и использованием современных средств обучения. Содержание направлено на воспитание интереса к предмету, развитие наблюдательности, геометрической зоркости, умения анализировать, догадываться, рассуждать, доказывать, решать учебную задачу творчески.
Тематика задач и заданий отражает реальные познавательные интересы детей. В программе содержатся полезная и любопытная информация, занимательные математические факты, способные дать простор воображению.
Новизна данного курса заключается в том, что на занятиях происходит знакомство учащихся с категориями математических задач, не связанных непосредственно со школьной программой, с новыми методами рассуждений, так необходимыми для успешного решения учебных и жизненных проблем.
Актуальность курса «Юный математик» - необходимость реализации индивидуальных образовательных запросов, удовлетворения познавательных потребностей.
Педагогическая целесообразность введения данного курса состоит в том, что его содержание и формы организации помогут учащимся через практические занятия оценить свой потенциал с точки зрения образовательной перспективы и предоставят им возможность работать на уровне повышенных возможностей.
Обучение по данной программе способствует формированию новых знаний, умений, навыков, предметных компетенций в области математики и повышению общего уровня математической культуры пополнять математические знания из специальной литературы.
Предусмотрены личностные, метапредметные и предметные результаты освоения программы курса.
Для системы математического образования существенное значение имеет развитие интеллектуального потенциала подрастающего поколения.
При проведении уроков математики у учителя недостаточно времени, чтобы рассказывать учащимся занимательные истории, предлагать нестандартные задачи, накопленные на протяжении длительного времени. В ликвидации этого пробела определенное место может быть отведено разработанной программе, которая ориентирована на развитие математических способностей учащихся, формирование у них культуры умственного труда на основе многовековой истории математики как науки.
Цель курса:
- развитие математических способностей илогического мышления;
- развитие и закрепление знаний, умений и навыков по геометрическому материалу, полученному по математике в начальной школе;
- асширение и углубление представлений учащихся о культурно- исторической ценности математики, о роли ведущих ученых – математиков в развитии мировой науки;
Задачи курса:
- пробуждение и развитие устойчивого интереса учащихся к математике и ее приложениям;
- раскрытиетворческих способностей ребенка;
- развитие у учащихся умения самостоятельно и творчески работать с учебнойи научно- популярной литературой;
- воспитание твердости в пути достижения цели (решения той или иной задачи);
- осознание учащимися важности предмета, через примеры связи геометрии с жизнью;
- наблюдение геометрических форм в окружающих предметах и формирование на этой основе абстрактных геометрических фигур и отношений;
- приобретение навыков работы с различными чертежными инструментами;
- решение специально подобранных упражнений и задач, натравленных на формированиеприемов мыслительной деятельности;
- формирование потребности к логическим обоснованиям и рассуждениям;
- специальное обучение математическому моделированию как методу решения практических задач;
- работа с одаренными детьми в рамках подготовки к предметным олимпиадам и конкурсам.
- адаптация к переходу детей в среднее звено обучения, имеющее профильную направленность.
Общая характеристика курса.
Программа курса «Юный математик » для учащихся 5 классов направлена на расширение и углубление знаний по предмету. Курс состоит из двух тем : «Логические задачи» и «Занимательная математика». Темы программы непосредственно примыкают к основному курсу математики 5 класса. Однако в результате занятий учащиеся должны приобрести навыки и умения решать более трудные и разнообразные задачи, а так же задачи олимпиадного уровня.
Структура программы концентрическая, т.е. одна и та же тема может изучаться как в 5, так и в 6, 7 классах. Это связано с тем, что на разных ступенях обучения дети могут усваивать один и тот же материал, но уже разной степени сложности с учетом приобретенных ранее знаний.
Включенные в программу вопросы дают возможность учащимся готовиться к олимпиадам и различным математическим конкурсам. Занятия могут проходить в форме бесед, лекций, игр. Особое внимание уделяется решению задач повышенной сложности. Предлагаемая система занятий позволит успешно решать задачи развития внимания, памяти, воображения, быстроты реакции, пробудить интерес к самому процессу познания.
Интерес программного материала у учащихся значительно повышается, если учитель предлагает им различные математические головоломки. В программе курса с учётом обязательных результатов обучения математике для учащихся данного возраста рассматриваются различные арифметические и логические головоломки.
Развитие пространственного воображения способствуют задачи геометрического содержания. Рассматриваются занимательные геометрические задачи, которые имеют прикладную направленность. Изучая вопросы геометрического содержания, учащиеся создают геометрический образ, оперируют данным образом в односложных связях и изменённых условиях. Ученики участвуют в творческом конструировании образа.
Место курса в учебном плане.
В соответствии с учебным планом МБОУ «ООШ№9»на изучениекурса«Юный математик» в 5 классе отводится 68 часов (2 часа в неделю)
Личностные и метапредметные результаты освоения курса внеурочной деятельности
Личностные результаты:
1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;
2) ответственное отношение к учению, готовность и способность учащихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
3) критичность мышления, инициатива, находчивость, активность при решении математических задач.
Метапредметные результаты:
1) осознание значения математики для повседневной жизни человека;
2) представление о математической науке как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;
3) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;
4) развитие навыков исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
5) умения ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
6)проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
7) поиска, систематизации, анализа и классификации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Содержание курса внеурочной деятельности
Программа состоит из 2 глав: «Логические задачи», « Занимательная математика» и включает в себя ряд независимых разделов и вопросов, которые углубляют знания учащихся, расширяют их математический кругозор. В данном курсе предусматривается обязательное выделение времени на решение задач повышенной трудности. Это способствует активизации мыслительной деятельности учащихся, формированию наглядно-образного и абстрактного мышления, формированию навыков творческого мышления.
Курс рассчитан на 68 часов (2 часа в неделю). Он предполагает чёткое и краткое изложение теории вопроса, решение задач, самостоятельную работу. Примерное распределение учебного времени указано в тематическом планировании. Каждое занятие состоит из двух частей : задачи, решаемые с учителем, и задачи для самостоятельного (или домашнего) решения. Учащиеся знакомятся с интересными свойствами чисел, приемами устного счета, особыми случаями счета, с биографиями великих математиков, их открытиями. Большая часть занятий отводится решению олимпиадных задач.
При разработке программы внеурочной деятельности основными являются вопросы, не входящие в школьный курс обучения. Именно этот фактор является значимым при дальнейшей работе с одаренными детьми, подготовке их к олимпиадам различного уровня.
Тема1.Как возникло слово «математика» (1 час).
Счёт у первобытных людей (1 час).
Сообщается история возникновения слова «математика».Происходит знакомство детей с интересными сведениями из истории развития счёта: начиная от счёта на пальцах до счёта в наши дни.
Тема 2.Приёмы устного счёта (1час).
Использование приёмов устного счёта(4 часа).
Показ выгодности использования приёмов устного счёта.
Приёмы устного счёта.
Тема 3.Числа. Чётность и нечётность.(2часа).
Решение задач практического характера на применение данных свойств(4часа).
Классификация натуральных чисел: чётные и нечётные, однозначные и многозначные.
Тема 4.Переливания(3часа).
Показ практической значимости данной темы.
Выстраивание алгоритма рассуждений. Поиск альтернативных путей решения. Решение задач на переливание.
Тема 5.Взвешивание (2часа)
Показ практической значимости данной темы.
Тема 6.Составление выражений (4 часа).
Выполнение разнообразных заданий на отработку навыков решения примеров в несколько действий.
Тема 7.Головоломки и числовые ребусы (4 часа).
Развивается логическое мышление, умение анализировать ситуацию, находить альтернативные пути решения.
Тема 8.Логические задачи (4 часа).
Развивается логическое мышление, умение анализировать. Развиваются коммуникативные способности.
Тема 9.Мир больших чисел (2 часа).
Знакомство с числами – великанами.
Тема 10. Решение олимпиадных задач арифметическим методом. Уникурсальные кривые ( фигуры) (4часа).
Решение задач повышенной ступени трудности.
Тема 11. Метрическая система мер(2 часа).
Сообщаются интересные сведения о различных мерах длины, площади, массы, существовавшие на Руси с давних времён.
Тема 12.Геометрия Гулливера (1 час)
Геометрическая головоломка. Танграм(3 часа).
Рассказывается об истории геометрии Гулливера .Решение головоломок.
Тема 13. Простые числа(2 часа).
Знакомство с простыми числами.
Тема 14. Биографическая миниатюра .Архимед.(3 часа)
Возведение в квадрат чисел пятого и шестого десятков. Биографическая миниатюра .Архимед.
Тема 15.Старинные меры. Оригами(4 часа).
История возникновения старинных мер.
Оригами – складывание фигурок из бумаги.
Знакомство с оригами.
Тема 16. Умножение на 155 и 175(4часа).
Биографическая миниатюра . Б. Паскаль.
Тема 17. Геометрические иллюзии (1час).
Геометрическая задача – фокус
« Продень монетку».
Тема 18.Четность суммы и произведения (3часа).
Решение олимпиадных задач на четность.
Тема 19.Деление на 5 (50), 25 (250) (3часа).
Математические мотивы в художественной литературе. Игра « Попробуй сосчитай».
Тема 20. Математические ребусы(2часа).
Решение олимпиадных задач.
Тема 21. Геометрические задачи на разрезание (2 часа).
Развитие логического мышления, умения анализировать ситуацию.
Тема 22. Зачет.
Календарно – тематическое планирование
№ п\п |
Изучаемый материал |
кол-во часов |
Дата |
|||||
прим |
фак |
|||||||
1 |
Как возникло слово «математика». |
1 |
03.09 |
|
||||
2 |
Счет у первобытных людей. |
1 |
03.09 |
|
||||
3 |
Приемы устного счета: умножение двузначных чисел на 11.Цифры у разных народов. |
1 |
10.09 |
|
||||
4 |
Использование приемов устного счета |
1 |
10.09 |
|
||||
5 |
Использование приемов устного счета.Как быстро умножить на 11. |
1 |
17.09 |
|
||||
6 |
Использование приемов устного счета. Построение алгоритма действий. |
1 |
17.09 |
|
||||
7 |
Выгодность использования приемов устного счета. |
1 |
24.09 |
|
||||
8 |
Числа. Чётность и нечётность. Однозначные и многозначные числа. |
1 |
24.09 |
|
||||
9 |
Числа. Чётность и нечётность |
1 |
01.10 |
|
||||
10 |
Решение задач практического характера на применение данных свойств
|
1 |
01.10 |
|
||||
11 |
Решение задач практического характера на применение свойств чётности и нечётности чисел |
1 |
08.10 |
|
||||
12 |
Решение задач практического характера на применение свойств.Классификация чисел. |
1 |
08.10 |
|
||||
13 |
Решение задач практического характера на применение данных свойств, рассуждения, использование рациональных способов. |
1 |
15.10 |
|
||||
14 |
Переливания.Выстраивание алгоритма рассуждений. |
1 |
15.10 |
|
||||
15 |
Переливания. Поиск альтернативных путей решения. Решение задач. |
1 |
22.10 |
|
||||
16 |
Переливания из одной ёмкости в другую. Пути решения задач. |
1 |
22.10 |
|
||||
17 |
Взвешивание. Практическая значимость этой темы. |
1 |
29.10 |
|
||||
18 |
Взвешивание. Решение задач. |
1 |
29.10 |
|
||||
19 |
Составление выражений. Отработка навыков решения примеров в несколько действий. |
1 |
12.11 |
|
||||
20 |
Составление выражений.Отработка навыков решения примеров в несколько действий. |
1 |
12.11 |
|
||||
21 |
Составление выражений. Выполнение разнообразных заданий. |
1 |
19.11 |
|
||||
22 |
Составление выражений. Выполнениеразнообразных заданий. |
1 |
19.11 |
|
||||
23 |
Головоломки и числовые ребусы. Нахождение альтернативных путей решения. |
1 |
26.11 |
|
||||
24 |
Головоломки и числовые ребусы. Нахождение альтернативных путей решения. |
1 |
26.11 |
|
||||
25 |
Головоломки и числовые ребусы. Составление числовых ребусов. |
1 |
03.12 |
|
||||
26 |
Головоломки и числовые ребусы. решение головоломок. |
1 |
03.12 |
|
||||
27 |
Логические задачи. Решение задач арифметическим методом. |
1 |
10.12 |
|
||||
28 |
Логические задачи . Лабиринты. |
1 |
10.12 |
|
||||
29 |
Логические задачи . Решение логических задач матричным способом. Как играть, чтобы не проиграть? |
1 |
17.12 |
|
||||
30 |
Логические задачи. Решение логических задач матричным способом. Как играть, чтобы не проиграть? |
1 |
17.12 |
|
||||
31 |
Мир больших чисел. Интересный способ умножения. |
1 |
24.12 |
|
||||
32 |
Мир больших чисел. Интересный способ умножения. |
1 |
24.12 |
|
||||
33 |
Решение олимпиадных задач ( используя действия с натуральными числами). |
1 |
|
|
||||
34 |
Решение олимпиадных задач арифметическим методом. |
1 |
|
|
||||
35 |
Уникурсальные кривые ( фигуры) |
1 |
|
|
||||
36 |
Уникурсальные кривые ( фигуры) |
1 |
|
|
||||
37 |
Метрическая система мер |
1 |
|
|
||||
38 |
Метрическая система мер. Решение олимпиадных задач с применением начальных понятий геометрии. |
1 |
|
|
||||
39 |
Геометрия Гулливера |
1 |
|
|
||||
40 |
Геометрическая головоломка. Танграм |
1 |
|
|
||||
41 |
Геометрическая головоломка. Танграм |
1 |
|
|
||||
42 |
Геометрическая головоломка. Танграм |
1 |
|
|
||||
43 |
Простые числа. Решение олимпиадных задач ( математические ребусы) . Игра «Буриме» с использованием чисел.
|
1 |
|
|
||||
44 |
Простые числа. Решение олимпиадных задач ( математические ребусы) . Игра «Буриме» с использованием чисел.
|
1 |
|
|
||||
45 |
Биографическая миниатюра. Архимед. Возведение в квадрат чисел пятого и шестого десятков. Решение олимпиадных задач (на совместную работу) |
1 |
|
|
||||
46 |
Биографическая миниатюра.Архимед. Возведение в квадрат чисел пятого и шестого десятков. Решение олимпиадных задач (на совместную работу) |
1 |
|
|
||||
47 |
Биографическая миниатюра.Архимед. Возведение в квадрат чисел пятого и шестого десятков. Решение олимпиадных задач (на совместную работу) |
1 |
|
|
||||
48
|
Старинные меры. Оригами. История возникновения оригами. |
1 |
|
|
||||
49 |
Старинные меры. Оригами .Изготовление фигур. |
1 |
|
|
||||
50 |
Старинные меры. Оригами |
1 |
|
|
||||
51 |
Старинные меры. Оригами |
1 |
|
|
||||
52 |
Умножение на 155 и 175.Знакомство с приёмами умножения. |
1 |
|
|
||||
53 |
Умножение на 155 и 175.Применение приёмов умножения. Выполнение заданий. |
1 |
|
|
||||
54 |
Умножение на 155 и 175 |
1 |
|
|
||||
55 |
Умножение на 155 и 175 |
1 |
|
|
||||
56 |
Геометрические иллюзии Геометрическая задача – фокус « Продень монетку».
|
1 |
|
|
||||
57 |
Четность суммы и произведения |
1 |
|
|
||||
58 |
Четность суммы и произведения. Решение олимпиадных задач на чётность. |
1 |
|
|
||||
59 |
Четность суммы и произведения. Прибавление чётного. Знак произведения. |
1 |
|
|
||||
60 |
Деление на 5 (50), 25 (250) Математические мотивы в художественной литературе. Игра « Попробуй сосчитай». |
1 |
|
|
||||
61 |
Деление на 5 (50), 25 (250) |
1 |
|
|
||||
62 |
Деление на 5 (50), 25 (250) |
1 |
|
|
||||
63 |
Математические ребусы |
1 |
|
|
||||
64 |
Математические ребусы. Решение олимпиадных задач. |
1 |
|
|
||||
65 |
Геометрические задачи на разрезание |
1 |
|
|
||||
66 |
Геометрические задачи на разрезание .Игра «Перекладывание карточек». |
1 |
|
|
||||
67 |
Решение олимпиадных задач ( с применением свойств геометрических фигур). Задачи в стихах. |
1 |
|
|
||||
68 |
Зачёт. Умножение двузначных чисел, близких к 100. Решение олимпиадных задач |
1 |
|
|
РЕЗУЛЬТАТЫ ОСВОЯНИЯ СОДЕРЖАНИЯ ПРОГРАММЫ
У учащихся могут быть сформированы
личностные результаты:
ответственное отношение к учению, готовность и способность
обучающихся к самообразованию на основе мотивации к обучению и познанию, осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;
способность к эмоциональному восприятию математических объектов,
задач, решений, рассуждений;
умение контролировать процесс и результат математической деятельности; первоначальные представления о математической науке как сферечеловеческой деятельности, об этапах её развития, о её значимости для развития цивилизации; коммуникативная компетентность в общении и сотрудничестве сосверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативность мышления, инициативы, находчивости, активности при решении задач.
Метапредметные: регулятивные учащиеся получат возможность научиться: составлять план и последовательность действий;
определять последовательность промежуточных целей исоответствующих им действий с учётом конечного результата;
предвидеть возможность получения конкретного результата прирешении задач; осуществлять констатирующий и прогнозирующий контроль по результату и способу действия;
концентрировать волю для преодоления интеллектуальныхзатруднений и физических препятствий;
адекватно оценивать правильность и ошибочность выполнения
учебной задачи, её объективную трудность и собственные возможности её решения. познавательные учащиеся получат возможность научиться: устанавливать причинно-следственные связи; строить логическиерассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
формировать учебную и общекультурную компетентность вобласти использования информационно-коммуникационных технологий;
видеть математическую задачу в других дисциплинах, окружающей жизни;
выдвигать гипотезу при решении учебных задач и понимать необходимость их проверки; планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
выбирать наиболее эффективные и рациональные способырешения задач; интерпретировать информацию (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);
оценивать информацию (критическая оценка, оценка достоверности).
коммуникативные учащиеся получат возможность научиться: организовывать учебное сотрудничество и совместнуюдеятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;
взаимодействовать и находить общие способы работы;
работать вгруппе;
Находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов;
слушать партнёра;
формулировать, аргументировать и отстаивать своё мнение;
прогнозировать возникновение конфликтов при наличии различных точек зрения; разрешать конфликты на основе учёта интересов и позиций всех участников; координировать и принимать различные позиции во взаимодействии;
аргументировать свою позицию и координировать её спозициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.
Материально –техническое обеспечение
1.Г.М.Киселёва. Математика 5-6 классы. Организация познавательной
деятельности. Изд. «Учитель», 2013 г.
2.И.В. Фотина. Математика 5-11 классы. Коллективный способ обучения. Изд. «Учитель», 2013 г.
3. И.Я. Депман, Н.Я. Виленкин. «За страницами учебника математики: Пособие для учащихся 5 – 6 классов сред школ. – М.: «Просвещение», 1989 г.
4. «Все задачи "Кенгуру"», С-П.,2003г.
5. Л.М.Лихтарников. «Занимательные задачи по математике», М.,1996г.
6. Е.В.Галкин. «Нестандартные задачи по математике», М., 1996г.
7. А.Я.Кононов. «Математическая мозаика», М., 2004 г.
8. Б.П.Гейдман. «Подготовка к математической олимпиаде», М., 2007 г.
9. Т.Д.Гаврилова. «Занимательная математика», изд. Учитель, 2005 г.
10. Е.В.Галкин. «Нестандартные задачи по математике, 5-11 классы», М., 1969 г.
11. «Ума палата» - игры, головоломки, загадки, лабиринты. М., 1996г.
12. А.С.Чесноков, С.И.Шварцбурд, В.Д.Головина, И.И.Крючкова, Л.А.Литвачук. «Внеклассная работа по математике в 4 – 5 классах». / под ред. С.И.Шварцбурда. М.: «Провсещение», 1974 г.
13. А. Я.Котов. «Вечера занимательной арифметики»
14. Ф.Ф.Нагибин. «Математическая шкатулка». М.: УЧПЕДГИЗ, 1961 г.
15. В.Н.Русанов. Математические олимпиады младших школьников. М.: «Просвещение», 1990 г.
16. С.Н.Олехник, Ю.В.Нестеренко, М.К.Потапов. Старинные занимательные задачи. – М.: Наука. Главная редакция физико-математической литературы, 1985 г.
17. Е.И.Игнатьев. Математическая смекалка. Занимательные задачи, игры, фокусы, парадоксы. – М., Омега, 1994 г.
18. О. С.Шейнина, Г. М. Соловьева. Математика. Занятия школьного кружка. Москва «Издательство НЦ ЭНАС» 2007г.