Контрольная работа по геометрии по теме «Равнобедренный треугольник»

6
0
Материал опубликован 14 February 2020 в группе

ТЕСТ по геометрии

Цель: выявить степень усвоения учащимися знаний и умений по теме «Равнобедренный треугольник, его свойства и признаки», определить уровень их знаний, умений и навыков по пройденному материалу, развить самостоятельность.

Предмет: геометрия

Класс: 7

Темы: Виды треугольника. Равнобедренный и равносторонний треугольники. Свойства и признаки равнобедренного и равностороннего треугольников.

Учебник: Геометрия: 7 класс: учебник для учащихся общеобразовательных организаций / А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2018

Инструкция

- проведение проверочной работы в конце изучения темы «Равнобедренный треугольник»;

- тест рассчитан на 40 минут.

- в тесте представлены 18 заданий: 8 заданий с выбором ответа (причем количество правильных ответов может варьироваться от 1 до 3-х), 2 задания на сопоставление, 7 заданий с кратким ответом (причем ответ может быть представлен как в качестве слова, так и числовым значением при решении задачи), 1 задание, требующее полного решения задачи. Максимальное количество баллов – 22.

- первая и третья часть, а также задание №9 второй части оцениваются по 1 баллу;

- вторая часть задание №10 – 3 балла (по одному баллу за каждое правильное сопоставление);

- четвертая часть – 3 балла:

Если правильно записано то, что дано, что необходимо найти, ход решения верный, все его шаги выполнены правильно, получен верный ответ

3 балла

Если правильно записано то, что дано, что необходимо найти, ход решения верный, получен верный ответ, но пропущены объяснения

2 балла

Если правильно записано то, что дано, что необходимо найти, ход решения верный, но допущена вычислительная ошибка и пропущены объяснения

1 балл

Другие случаи, не соответствующие указанным выше критериям

0 баллов

Критерии оценок

0-9 баллов – оценка «2»

10-14 баллов – оценка «3»

15-18 баллов – оценка «4»

19-22 баллов – оценка «5»

Контрольно-измерительный материал

Часть 1

(вариантов ответов может быть от 1 до 4)

1. По количеству равных сторон треугольники бывают:

а) равносторонние;

б) равные;

в) равнобедренные;

г) разносторонние.

2. Равнобедренным называется треугольник, у которого:

а) два угла равны;

б) стороны равны;

в) две стороны равны;

3. В равнобедренном треугольнике:

а) все стороны равны;

б) две стороны равны;

в) все стороны равны;

г) биссектриса, проведенная из вершины треугольника, является медианой и высотой.

4. В равностороннем треугольнике:

а) все углы равны;

б) высота, медиана и биссектриса, проведенная из одного угла, совпадают;

в) все стороны равны;

г) высота, медиана и биссектриса совпадают.

5. В каком треугольнике только одна его высота делит треугольник на два равных треугольника?

а) в любом;

б) в равнобедренном;

в) в равностороннем;

г) в тупоугольном.

6. В каком треугольнике любая высота делит треугольник на два равных треугольника?

а) в любом;

б) в равнобедренном;

в) в равностороннем;

г) в тупоугольном.

7. Верно ли, что любой равнобедренный треугольник является равносторонним:

а) да;

б) нет.

8. Верно ли, что любой равносторонний треугольник является равнобедренным:

а) да;

б) нет.

Часть 2

(установите соответствие)

9. Найдите соответствие:

1. Свойство равнобедренного треугольника


а) Треугольник, у которого боковые стороны равны – равнобедренный.

2. Определение равнобедренного треугольника


б) Если в треугольнике два угла равны, то треугольник равнобедренный.

3. Признак равнобедренного треугольника


в) В равнобедренном треугольнике углы при основании равны


10. Определите вид треугольника:

1. Равнобедренный треугольник


а) Периметр треугольника равен 14 см. Одна сторона 5 см, вторая – 3 см

2. Равносторонний треугольник


б) Одна сторона треугольника равна 5 см, вторая – 4 см, а периметр равен 14 см

3. Разносторонний треугольник


в) Две стороны треугольника равны по 5 см, а периметр равен 15 см.


Часть 3

(впишите ответ)

11. Как называется равные стороны равнобедренного треугольника?

Ответ: _________

12. Если биссектриса треугольника является ___________, то треугольник равнобедренный.

Ответ: ________

13. Одна из боковых сторон равнобедренного треугольника равна 7 см, а основание равно 6 см. Чему равен периметр данного треугольника?

Ответ: ________

14. Периметр равнобедренного треугольника равен 10 см, боковая сторона которого равна 3 см. Из вершины треугольника к основанию проведена высота. Найдите отрезки, которые делит данная высота основание треугольника.

Ответ: ________

15. Периметр равностороннего треугольника равен 36 см. Чему равны стороны данного треугольника?

Ответ: _________

16. Угол, смежный углу при основании равнобедренного треугольника равен 110°. Найдите углы при основании треугольника.

Ответ: ____________

17. Дан равнобедренный треугольник. Угол между медианой угла при вершине и боковой стороной треугольника равен 40°. Найдите угол при вершине треугольника.

Ответ: _________

Часть 4

(оформите и запишите решение задачи)

18.

.t1581661679aa.png

Дано: _________________

_______________________

_______________________

­

Найти: ________________

Решение: __________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Ответ: _________________________



Правильные ответы

Часть 1

1

2

3

4

5

6

7

8

а, в, г

в

б, г

а, б, в

б

в

б

а

Часть 2

9

1

2

3

в

а

б

10

1

2

3

б

в

а

Часть 3

11

12

13

14

15

16

17

боковые

высотой

20 см

2 см

12 см, 12 см, 12 см

70°, 70°

80°

Часть 4

№​​​​​​​ 18

t1581661679ab.png

Дано: Δ ABC – равнобедренный

BAC=60°,

СD – биссектриса BCE

Найти:DCE

Решение:

1) т. к. Δ ABC – равнобедренный → BCE=∠BAC=60°.

2) BCE=180°-∠BCE=180°-60°=120°.

3) т.к. СD – биссектриса BCEBCD=∠DCE=∠BCE : 2 = 120° : 2 = 60°.

Ответ: DCE=60°.



БЛАНК ОТВЕТОВ

ФИ учащегося _____________________________ Класс ________

Часть 1

1

2

3

4

5

6

7

8









Часть 2

9

1

2

3




10

1

2

3




Часть 3

11

12

13

14

15

16

17








Часть 4

18

t1581661679ab.png

Дано:__________________________

_______________________________

_______________________________

Найти: _________________________

Решение: ____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Ответ: _________________________

в формате Microsoft Word (.doc / .docx)
Комментарии
Комментариев пока нет.

Похожие публикации