Статья «Решение уравнений 4-ой степени. Метод Феррари»

25
0
Материал опубликован 8 October 2016 в группе

ПЕРВУШКИН БОРИС НИКОЛАЕВИЧ

ЧОУ «Санкт-Петербургская Школа «Тет-а-Тет»

Учитель Математики Высшей категории


 

Решение уравнений 4-ой степени. Метод Феррари

Целью данной статьи является изложение метода Феррари, с помощью которого можно решать уравнения четвёртой степени

a0x4 + a1x3 + a2x2 + a3x + a4 = 0,

(1)

где a0, a1, a2, a3, a4 –  произвольные вещественные числа, причем 

      Метод Феррари состоит из двух этапов.

      На первом этапе уравнения вида (1) приводятся к уравнениям четвертой степени, у которых отсутствует член с третьей степенью неизвестного.

      На втором этапе полученные уравнения решаются при помощи разложения на множители, однако для того, чтобы найти требуемое разложение на множители, приходится решать кубические уравнения.

Приведение уравнений 4-ой степени

      Разделим уравнение (1) на старший коэффициент a0 . Тогда оно примет вид

x4 + ax3 + bx2 + cx + d = 0,

(2)

где a, b, c, d –  произвольные вещественные числа.

      Сделаем в уравнении (2) замену

(3)

где y –  новая переменная.

      Тогда, поскольку

то уравнение (2) принимает вид

(4)

      Если ввести обозначения

то уравнение (4) примет вид

y4 + py2 + qy + r = 0,

(5)

где p, q, r –  вещественные числа.

      Первый этап метода Феррари  завершён.

Разложение на множители. Кубическая резольвента

      Добавив и вычитая в левой части уравнения (5) выражение

2sy2 + s2,

где s –  некоторое число, которое мы определим чуть позже, из (5) получим

      Следовательно, уравнение (5) принимает вид

(6)

      Если теперь выбрать число s так, чтобы оно являлось каким-нибудь решением уравнения

(7)

то уравнение (6) примет вид

(8)

      Избавляясь от знаменателя, уравнение (7) можно переписать в виде

или, раскрыв скобки, - в виде

(9)

      Полученное кубическое уравнение (9), эквивалентное уравнению (7), называют кубической резольвентой уравнения 4-ой степени (5).

      Если какое-нибудь решение  кубической резольвенты (9) найдено, то уравнение (8) можно решить, разложив его левую часть на множители с помощью формулы сокращенного умножения «Разность квадратов».

      Действительно,

      Таким образом, для решения уравнения (8) остаётся решить квадратное уравнение

(10)

а также квадратное уравнение

(11)

      Вывод метода Феррари завершен.

Пример решения уравнения 4-ой степени

      Пример. Решить уравнение

x4 + 4x3 – 4x2 – 20x – 5 = 0.

(12)

      Решение. В соответствии с (3) сделаем в уравнении (12) замену

x = y – 1.

(13)

      Поскольку

x4 + 4x3 – 4x2 – 20x – 5 = (y – 1)4 + 4(y – 1)3 – 4(y – 1)2 – 20(y – 1)– 5 = 
= y4 – 4y3 + 6y2 – 4y + 1 + 4y3 – 12y2 + 12y – 4 – 4y2 + 8y – 4 – 20y + 20 – 5 =
= y4 – 10y2 – 4y + 8,

то в результате замены (13) уравнение (12) принимает вид

y4 – 10y2 – 4y + 8 = 0.

(14)

      В соответствии с (5) для коэффициентов уравнения (14) справедливы равенства

p = – 10,      q = – 4,       r = 8.

(15)

      В силу (9)  и (15) кубической резольвентой для уравнения (14) служит уравнение

2s3 + 10s2 – 16s – 84 = 0,

которое при сокращении на 2 принимает вид:

s3 + 5s2 – 8s – 42 = 0.

(16)

      Проверяя, какой из делителей свободного члена уравнения (16) является целым корнем этого уравнения, находим, что целым корнем кубической резольвенты является число

s = – 3.

(17)

      Подставляя значения (15) и (17) в формулу (10), получаем уравнение

y2 – 2y – 4 = 0,

корни которого имеют вид:

(18)

      Подставляя значения (15) и (17) в формулу (11), получаем уравнение

y2 + 2y – 2 = 0,

корни которого имеют вид:

(19)

      В завершение, воспользовавшись формулой (13), из (18) и (19) находим корни уравнения (12):

      Ответ

      Замечание. При решении примера мы попутно получили разложение левой части уравнения (14) на множители:

y4 – 10y2 – 4y + 8 = (y2 – 2y – 4) (y2 + 2y – 2).

(19)


 

Комментарии
Комментариев пока нет.