Реферат «Площадь многоугольника. Формула Пика»

2
0
Материал опубликован 5 March 2023

Асанова З.А

Площадь многоугольника.

Формула Пика


«Берем палец и считаем»

В.В.Вавилов

При решении задач на нахождение площади многоугольника на клетчатой бумаге необходимо воображение и знание основных геометрических свойств и формул. Существует множество способов решения задач на клетчатой бумаге. Если фигура состоит из целых квадратиков, это сделать довольно таки легко. Посчитать квадратики и всё! Сложнее задача, когда многоугольник имеет интересную форму и тогда его надо разбить на простые многоугольники. А если фигура не многоугольник , а например криволинейная трапеция ? Для решения таких задач существует достаточно простой способ с использованием формулы Пика. Ее могут использовать школьники и взрослые при решении реальных ситуаций; учителя, как при проведении уроков по математике, так и на факультативных курсах и дополнительных занятий на повторение.


Формула Пика. Решетки. Узлы

При решении задач на клетчатой бумаге необходимы понятия решетки и узла.

Клетчатая бумага (точнее — ее узлы), на которой мы часто предпочитаем рисовать и чертить, является одним из важнейших примеров точечной решетки на плоскости.

Рассмотрим на плоскости два семейства параллельных прямых, разбивающих плоскость на равные квадраты. Любой из этих квадратов называется фундаментальным квадратом или квадратом, порождающим решетку. Множество всех точек пересечения этих прямых называется точечной решеткой или просто решеткой, а сами точки – узлами решетки.

t1678031071aa.png Рис.1.

Чтобы оценить площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу)

А также, площадь любого многоугольника, нарисованного на клетчатой бумаге, легко посчитать, представив её как сумму или разность площадей прямоугольных треугольников и прямоугольников, стороны которых идут по лt1678031071ab.jpg иниям сетки, проходящим через вершины нарисованного треугольника. Чтобы вычислить площадь многоугольника, изображенного на рисунке, необходимо достроить его до прямоугольника ABCD, вычислить площадь прямоугольника ABCD, найти площадь заштрихованной фигуры как сумму площадей треугольников и прямоугольников её составляющих, вычесть её из площади прямоугольника. И хотя многоугольник и выглядит достаточно просто, для вычисления его площади нам придется потрудиться. А если бы многоугольник выглядел более причудливо, как на следующих рисунках?


t1678031071ac.pngt1678031071ad.jpgt1678031071ae.pngt1678031071af.png


t1678031071ag.pngt1678031071ah.gift1678031071ai.png

Оказывается, площади многоугольников, вершины которых расположены в узлах решетки, можно вычислять гораздо проще: есть формула, связывающая их площадь с количеством узлов, лежащих внутри и на границе многоугольника.

Эта замечательная и простая формула называется формулой Пика:

S = В +t1678031071ak.gif - 1

где S– площадь многоугольника,

В – число узлов решетки, расположенных строго внутри многоугольника,

Г – число узлов решетки, расположенных на его границе, включая вершины.

Будем рассматривать только такие многоугольники, все вершины которых лежат в узлах решетки.

Нахождение площадей многоугольников, изображенных на клетчатой бумаге

Приведу несколько примеров из заданий ОГЭ на нахождение площадей многоугольников.

На клетчатой бумаге с клетками размером 1 см х 1 см изображен многоугольник. Найдите его площадь в квадратных сантиметрах

Рисунок

По формуле геометрии

По формуле Пика

t1678031071al.gift1678031071am.png

a=6; b=4

S1 = 1*5: 2 = 2,5.

S2=5*5:2 = 12,5

S = 2,5 + 12,5 = 15(см2)

t1678031071an.gif

Г=12,B=10 .

S=10+t1678031071ao.gif -1=15(см2)



t1678031071ap.png

S1=t1678031071aq.gif b=1/2t1678031071ar.gif 7t1678031071as.gif 3,5

S2=t1678031071aq.gif b=1/2t1678031071ar.gif 7t1678031071ar.gif 2=7

S3=t1678031071aq.gif b=1/2t1678031071ar.gif 4t1678031071ar.gif 1=2

S4=t1678031071aq.gif b=1/2t1678031071ar.gif 5t1678031071ar.gif 1=2,5

S5=a²=1²=1

Sкв.= a²=7²=49

S=49-3,5-7-2-2,51=33(см²)

t1678031071an.gif

Г=4;В=32.

S=32+t1678031071at.gif -1=33см²



t1678031071au.png

S=at1678031071av.gif

t1678031071aw.gif

t1678031071ax.gif

S=t1678031071ay.gif =36 см2


t1678031071an.gif

Г=18, В=28

S=28+t1678031071az.gif -1=36см2



t1678031071ba.png

S1=t1678031071aq.gif b=1/2t1678031071ar.gif 3t1678031071ar.gif 6=9

S2=t1678031071aq.gif b=1/2t1678031071ar.gif 6t1678031071ar.gif 6=18

S3=t1678031071aq.gif b=1/2t1678031071ar.gif 3t1678031071ar.gif 6=9

S=9+18+9=36см²

t1678031071an.gif

Г=18;В=28.

S=28+t1678031071az.gif -1=36см²








t1678031071bb.png

S1=t1678031071aq.gif b=1/2t1678031071ar.gif 2t1678031071ar.gif 4=4

S2=t1678031071bc.gif =1/2t1678031071ar.gif 4t1678031071ar.gif 4=8

S3=t1678031071bc.gif =1/2t1678031071ar.gif 8t1678031071ar.gif 2=8

S4=t1678031071bc.gif =1/2t1678031071ar.gif 4t1678031071ar.gif 1=2

Sпр.=t1678031071bd.gif b=6t1678031071ar.gif 8=48

S5=48-4-8-8-2=26см²

t1678031071be.gif

Г=18;В=18.

S=18+t1678031071az.gif -1=26см²



                       Геометрические задачи с практическим содержанием.

    Поможет нам формула Пика и для решения геометрических задач с практическим содержанием.


t1678031071bf.jpg 

Задача 1. Найдите площадь лесного массива (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м .

Решение. Найдём St1678031071bg.gif площадь четырёхугольника, изображённого на клетчатой бумаге по формуле Пика:

S = В + t1678031071bh.gif - 1

В = 8, Г = 7. St1678031071bg.gif = 8 + 7/2 – 1 = 10,5 (см²)

1 см² - 200² м²; S = 40000 · 10,5 = 420 000 (м²)

Ответ: 420 000 м²

t1678031071bi.jpg 

Задача 2. Найдите площадь поля (в м²), изображённого на плане с квадратной сеткой 1 × 1(см) в масштабе 1 см – 200 м.

Решение. Найдём St1678031071bg.gif площадь четырёхугольника изображенного на клетчатой бумаге по формуле Пика: S = В + t1678031071bh.gif - 1

В = 7, Г = 4. St1678031071bg.gif = 7 + 4/2 – 1 = 8 (см²)

1 см² - 200² м²; S = 40000 · 8 = 320 000 (м²)

Ответ: 320 000 м²

t1678031071bj.png 

Задача 3. Вершины квадрата соединены с серединами его сторон, как показано на рис 5. Найдите площадь закрашенного восьмиугольника, если стороны квадрата равны 12.

Решение: По формуле Пика: S= В + Г /2 – 1. В = 21,

Г = 8, S = 21 + 8 / 2 – 1 = 24 (кв.ед.)


Ответ: 24 кв.ед.

Рассмотренные задания имеют различный уровень трудности – от простых до олимпиадных. Каждый может найти среди них задачи посильного уровня сложности, отталкиваясь от которых, можно будет переходить к решению более трудных. Такой способ нахождения площадей многоугольников, изображенных на клетчатой бумаге, можно использовать на ОГЭ для решения задач на ОГЭ и ЕГЭ.



Литература

Свободная энциклопедия Википедия, статья «Формула Пика», URL: https://ru.wikipedia.org/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%9F%D0%B8%D0%BA%D0%B0

Свободная энциклопедия Википедия, статья «Пик, Георг», URL: https://ru.wikipedia.org/wiki/%D0%9F%D0%B8%D0%BA,_%D0%93%D0%B5%D0%BE%D1%80%D0%B3

Научно-популярный физико-математический журнал «Квант», Н.Б.Васильев, статья «Вокруг формулы Пика», URL:http://kvant.ras.ru/1974/12/vokrug_formuly_pika.htm

Математика, которая мне нравится [электронный ресурс], статья «Георг Александр Пик (1859-1942)», URL: http://hijos.ru/2011/12/30/georg-aleksandr-pik-1859-1942/



в формате Microsoft Word (.doc / .docx)
Комментарии
Комментариев пока нет.

Похожие публикации