Рабочая программа по математике для 5–9 классов

1
0
Материал опубликован 2 January 2017 в группе

КТП 6 класс
DOCX / 28.5 Кб

РАБОЧАЯ ПРОГРАММА

учебного предмета

«МАТЕМАТИКА»

для обучащихся 5 – 9 классов

ФГОС ООО

 

Пояснительная записка

Программа составлена на основе

Закона РФ «Об образовании»

Федерального Государствен­ного образовательного стан­дарта основного общего образова­ния, утверждённого приказом Министерства образова­ния и науки РФ от 17.12. 2010г. №1897;

Учебного плана МКОУ «Рождественско-Хавская СОШ»;

Основной образовательной программы ООО МКОУ «Рождественско-Хавская СОШ»

Примерной про­граммы по математике 5-9 классы, разработанной А.А.Кузнецовым, М.В. Рыжаковым, А.М. Кондаковым.

Федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования

Положения о рабочей программе МКОУ «Рождественско-Хавской СОШ»

Рабочие программы по математике 5-6 классы. 2-е изд., Москва, « ВАКО», 2012год. Составители: Н.В.Панина, Ю.А.Седавкина.

Рабочие программы. Геометрия 7-11 классы. УМК Л.С.Атанасяна и других. Москва «Просвещение» 2012 год. Составители: Л.С.Атанасян, В.Ф. Бутузов и др.

Программы образовательных учреждений АЛГЕБРА 7-9 классы. Составитель: Бурмистрова Т.А. Москва «Просвещение» 2008г.

Программа ориентирована на использование в учебном процессе следующих УМК:

УМК по математике для 5–6-го классов авторов Н.В.Виленкин, В.И.Жохов, А.С.Чесноков,С.И.Шварцбурд,

УМК по алгебре для 7-9-го классов авторов Ю.Н.Макарычев и др.

УМК по геометрии для 7-9-го классов авторов Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев.

Общая характеристика учебного предмета

Содержание математического образования в основной школе формиру­ется на основе фунда­ментального ядра школь­ного математического образова­ния. Оно в основной школе включает сле­дующие разделы: арифметика, алгебра, функции, вероятность и стати­стика, геометрия. Содержание каждого из этих разделов разворачивается в содержа­тельно-методическую ли­нию, пронизывающую все основные раз­делы содержания ма­тематического образования на данной ступени обуче­ния.

Содержание раздела «Арифметика» служит базой для даль­нейшего изуче­ния учащи­мися математики, способствует разви­тию их логического мышле­ния, формированию уме­ния поль­зоваться алгоритмами, а также приобрете­нию практических навыков, необходи­мых в повседневной жизни. Развитие поня­тия о числе в основной школе связано с рациональ­ными и ир­рациональ­ными числами, формированием первичных пред­ставлений о действительном числе. Завершение числовой линии (систематизация сведений о действитель­ных числах, о комплексных числах), так же как и более сложные вопросы ариф­ме­тики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени об­щего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирова­ние у учащихся ма­тематиче­ского аппарата для решения задач из разных разделов матема­тики, смежных предметов, окружа­ющей реальности. Язык алгебры подчерки­вает значение мате­матики как языка для построения математических моделей процессов и явлений реального мира. В задачи изуче­ния алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассужде­ний. Преобразова­ние символьных форм вносит специфический вклад в разви­тие воображе­ния учащихся, их способностей к математическо­му творче­ству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с ир­рациональными выражениями, с тригоно­метрическими функ­циями и преобразова­ниями, входят в содержание курса мате­матики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками кон­кретных зна­ний о функции как важнейшей математической модели для описания и исследования разно­образных процессов. Изучение этого мате­риала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графиче­ский), вно­сит вклад в формирование представлений о роли математики в развитии цивилиза­ции и культуры.

Раздел «Вероятность и статистика» — обязательный ком­понент школь­ного образова­ния, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функцио­нальной грамот­ности - умений восприни­мать и критически анализиро­вать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, про­водить простей­шие вероятностные расчеты. Изучение основ комбинаторики позволит уча­щимся рассматривать случаи, осуществлять перебор и подсчет числа вариан­тов, в том чис­ле в про­стейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о совре­менной кар­тине мира и методах его ис­следования, формируется понима­ние роли статистики как ис­точника социально значимой информации, и закладываются основы вероятностного мышле­ния.

Цель содержания раздела «Геометрия» — развить у учащих­ся пространствен­ное воображе­ние и логическое мышление пу­тем систематиче­ского изучения свойств геометриче­ских фигур на плоскости и в пространстве и применения этих свойств при реше­нии задач вычислительного и конструктив­ного характера. Существенная роль при этом отводится разви­тию геометри­ческой интуиции. Сочетание наглядности со строго­стью явля­ется неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значи­тельной степени несет в себе меж­предметные знания, кото­рые находят применение, как в различных математи­ческих дисципли­нах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представлен­ный в нем мате­риал преимущественно изуча­ется и используется в ходе рассмотре­ния различных вопросов курса. Соответствую­щий материал наце­лен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в уст­ной и письменной речи.

Раздел «Математика в историческом развитии» предназна­чен для формирова­ния представле­ний о математике как части человеческой куль­туры, для общего развития школьни­ков, для создания культурно-историче­ской среды обучения. На него не выделя­ется специальных уроков, усвоение его не контролиру­ется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рас­смотрении проблематики основного содержания математичес­кого образования.

Цели и задачи:

Обучение математике в основной школе направлено на достижение следующих целей:

В направлении личностного развития:

формирование представлений о математике, как части общечеловече­ской культуры, о значимости математики в раз­витии цивилизации и современ­ного общества;

развитие логического и критического мышления, куль­туры речи, способно­сти к умствен­ному эксперименту;

формирование интеллектуальной честности и объектив­ности, способно­сти к преодоле­нию мыслительных стереоти­пов, вытекающих из обыденного опыта;

воспитание качеств личности, обеспечивающих соци­альную мобиль­ность, способ­ность принимать самостоятель­ные решения;

формирование качеств мышления, необходимых для адаптации в современ­ном информа­ционном обществе;

развитие интереса к математическому творчеству и ма­тематических способ­ностей;

В метапредметном направлении:

развитие представлений о математике как форме опи­сания и методе позна­ния действи­тельности, создание условий для приобретения первоначаль­ного опыта математиче­ского моделирования;

формирование общих способов интеллектуальной дея­тельности, характер­ных для мате­матики и являющихся осно­вой познавательной куль­туры, значимой для различных сфер человеческой деятельности;

В предметном направлении:

овладение математическими знаниями и умениями, не­обходимыми для про­долже­ния образования, изучения смеж­ных дисциплин, применения в повсе­дневной жизни;

создание фундамента для математического развития, формирования меха­низмов мышле­ния, характерных для мате­матической деятельности.

Задачи:

овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;

способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;

формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;

воспитывать культуру личности, отношение кматематики как части общечеловеческой культуры, играющей особую роль в общественном развитии.

Место учебного предмета в учебном плане

На изучение математики в основ­ной школе отводится 5 учебных часов в не­делю в течение каждого года обучения, всего 875 уроков. В 5—6 клас­сах изуча­ется предмет «Математика» (инте­грированный предмет), в 7—9 классах - «Математика»(включающий разделы «Алгебра» и «Геометрия»)

Распределение учебного времени между этими предметами представлено в таблице.

Классы

Предметы математического цикла

Количество часов

5-6

Математика

340

7-9

Раздел математики «Алгебра»

306

Раздел математики «Геометрия»

204

Всего

850

Предмет «Математика» в 5—6 классах включает арифмети­ческий мате­риал, элементы алгебры и геометрии, а также эле­менты вероятностно-статистиче­ской линии.

Предмет «Математика» в 7 – 9 классах включает в себя некоторые вопросы арифметики, развивающие числовую линию 5–6 классов, алгебраический материал, элементарные функ­ции, элементы вероятностно-статистической линии, а также геометрический мате­риал, традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометриче­ские преобразования.

Раздел «Алгебра» включает некоторые вопросы арифме­тики, развиваю­щие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции.

В рамках учебного раздела «Геометрия» традиционно изучаются, евкли­дова геометрия, элементы векторной алгебры, геометрические преобразова­ния.

Результаты освоения учебного предмета

Изучение математики в основной школе дает возможность обучающимся дос­тичь следую­щих результатов развития:

В личностном направлении:

умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, пони­мать смысл поставленной задачи, выстраивать аргументацию, приво­дить примеры и контрпримеры;

критичность мышления, умение распознавать логически некорректные вы­сказы­вания, отличать гипотезу от факта;

представление о математической науке как сфере чело­веческой деятельно­сти, об этапах ее развития, о ее значимо­сти для развития цивилиза­ции;

креативность мышления, инициатива, находчивость, активность при реше­нии математических задач;

умение контролировать процесс и результат учебной математической дея­тельно­сти;

способность к эмоциональному восприятию математи­ческих объектов, за­дач, решений, рассуждений.

В метапредметном направлении:

первоначальные представления об идеях и о методах математики как уни­версаль­ном языке науки и техники, сред­стве моделирования явлений и процессов;

умение видеть математическую задачу в контексте проб­лемной ситуа­ции в дру­гих дисциплинах, в окружающей жизни;

умение находить в различных источниках информацию, необходимую для реше­ния математических проблем, представ­лять ее в понятной форме, принимать реше­ние в условиях не­полной и избыточной, точной и вероятност­ной информации;

умение понимать и использовать математические сред­ства наглядности (гра­фики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпрета­ции, аргумента­ции;

умение выдвигать гипотезы при решении учебных за­дач, понимать необхо­ди­мость их проверки;

умение применять индуктивные и дедуктивные спосо­бы рассуждений, ви­деть различные стратегии решения задач;

понимание сущности алгоритмических предписаний и умение действо­вать в соот­ветствии с предложенным алго­ритмом;

умение самостоятельно ставить цели, выбирать и созда­вать алгоритмы для реше­ния учебных математических проб­лем;

умение планировать и осуществлять деятельность, на­правленную на реше­ние задач исследовательского характера.

В предметном направлении:

овладение базовым понятийным аппаратом по основ­ным разделам содержа­ния, представле­ние об основных изуча­емых понятиях (число, геометрическая фигура, уравне­ние, функция, вероятность) как важнейших математических моде­лях, позволяющих описы­вать и изучать реальные процессы и явления;

умение работать с математическим текстом (анализиро­вать, извлекать необ­ходи­мую информацию), грамотно приме­нять математическую терминоло­гию и симво­лику, использо­вать различные языки математики;

умение проводить классификации, логические обосно­вания, доказатель­ства математиче­ских утверждений;

умение распознавать виды математических утверждений (аксиомы, опреде­ления, тео­ремы и др.), прямые и обратные теоремы;

развитие представлений о числе и числовых системах от натуральных до действитель­ных чисел, овладение навыка­ми устных, письменных, инструмен­тальных вычисле­ний;

овладение символьным языком алгебры, приемами вы­полнения тождествен­ных преобра­зований рациональных вы­ражений, решения уравне­ний, систем уравнений, нера­венств и систем неравенств, умение использо­вать идею координат на плоскости для интерпре­тации уравнений, нера­венств, систем, умение применять алгебраические преобразова­ния, аппарат уравнений и неравенств для решения задач из различных разде­лов курса;

овладение системой функциональных понятий, функ­циональным язы­ком и символи­кой, умение на основе функ­ционально-графических представле­ний описывать и анализи­ровать реальные зависимости;

овладение основными способами представления и ана­лиза статистиче­ских данных; нали­чие представлений о стати­стических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моде­лях;

овладение геометрическим языком, умение использо­вать его для описа­ния предме­тов окружающего мира, разви­тие пространственных представле­ний и изобразительных уме­ний, приобретение навыков геометрических построе­ний;

усвоение систематических знаний о плоских фигурах и их свойствах, а также на нагляд­ном уровне — о простейших пространственных телах, умение приме­нять систематические знания о них для решения геометрических и практи­ческих задач;

умения измерять длины отрезков, величины углов, ис­пользовать фор­мулы для нахожде­ния периметров, площадей и объемов геометрических фи­гур;

умение применять изученные понятия, результаты, ме­тоды для решения задач практиче­ского характера и задач из смежных дисциплин с использова­нием при необходимо­сти справочных материалов, калькулятора, компью­тера.

Планируемые результаты изучения учебного предмета

Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

понимать особенности десятичной системы счисления;

оперировать понятиями, связанными с делимостью натуральных чисел;

выражать числа в эквивалентных формах, выбирая наиболее подходя­щую в зависимо­сти от конкретной ситуации;

сравнивать и упорядочивать рациональные числа;

выполнять вычисления с рациональными числами, сочетая устные и пись­менные приёмы вычислений, применение калькулятора;

использовать понятия и умения, связанные с пропорциональностью вели­чин, процен­тами, в ходе решения математическихзадач и задач из смеж­ных предметов, выпол­нять несложные практические расчёты.

Выпускник получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, от­личными от 10;

    углубить и развить представления о натуральных числах и свойст­вах делимости;

    научиться использовать приёмы, рационализирующие вычисления, приоб­рести при­вычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

  • использовать начальные представления о множестве действительных чи­сел;

    оперировать понятием квадратного корня, применять его в вычисле­ниях.

Выпускник получит возможность:

  • развить представление о числе и числовых системах от натураль­ных до действитель­ных чисел; о роли вычислений в практике;

    развить и углубить знания о десятичной записи действительных чи­сел (периодиче­ские и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

  • использовать в ходе решения задач элементарные представления, связан­ные с прибли­жёнными значениями величин.

Выпускник получит возможность:

  • понять, что числовые данные, которые используются для характери­стики объектов окру­жающего мира, являются преимущест­венно приближёнными, что по записи приближён­ных значений, содержа­щихся в информационных источниках, можно судить о погрешности прибли­жения;

    понять, что погрешность результата вычислений должна быть соизме­рима с погрешно­стью исходных данных.

Алгебраические выражения

Выпускник научится:

  • оперировать понятиями «тождество», «тождественное преобразова­ние», решать за­дачи, содержащие буквенные данные; работать с форму­лами;

    выполнять преобразования выражений, содержащих степени с целыми по­казателями и квадратные корни;

    выполнять тождественные преобразования рациональных выражений на основе пра­вил действий над многочленами и алгебраическими дробями;

    выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

  • выполнять многошаговые преобразования рациональных выражений, применяя широ­кий набор способов и приёмов;

    применять тождественные преобразования для решения задач из раз­личных разде­лов курса (например, для нахождения наиболь­шего/наименьшего значения выражения).

Уравнения

Выпускник научится:

  • решать основные виды рациональных уравнений с одной переменной, сис­темы двух урав­нений с двумя переменными;

    понимать уравнение как важнейшую математическую модель для описа­ния и изуче­ния разнообразных реальных ситуаций, решать текстовые задачи алгебраическим мето­дом;

    применять графические представления для исследования уравнений, иссле­дования и ре­шения систем уравнений с двумя переменными.

Выпускник получит возможность:

  • овладеть специальными приёмами решения уравнений и систем уравне­ний; уве­ренно применять аппарат уравнений для решения разнообраз­ных задач из математики, смеж­ных предметов, практики;

    применять графические представления для исследования уравнений, сис­тем уравне­ний, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

  • понимать и применять терминологию и символику, связанные с отноше­нием неравен­ства, свойства числовых неравенств;

    решать линейные неравенства с одной переменной и их системы; ре­шать квадрат­ные неравенства с опорой на графические представления;

    применять аппарат неравенств для решения задач из различных разде­лов курса.

Выпускник получит возможность научиться:

  • разнообразным приёмам доказательства неравенств; уверенно приме­нять аппарат нера­венств для решения разнообразных математиче­ских задач и задач из смежных предме­тов, практики;

    применять графические представления для исследования нера­венств, систем нера­венств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Выпускник научится:

  • понимать и использовать функциональные понятия и язык (термины, сим­волические обо­значения);

    строить графики элементарных функций; исследовать свойства число­вых функций на основе изучения поведения их графиков;

    понимать функцию как важнейшую математическую модель для описа­ния процес­сов и явлений окружающего мира, применять функциональный язык для описания и исследова­ния зависимостей между физическими величи­нами.

Выпускник получит возможность научиться:

  • проводить исследования, связанные с изучением свойств функций, в том числе с исполь­зованием компьютера; на основе графиков изученных функций строить более слож­ные графики (кусочно-заданные, с «выколо­тыми» точками и т. п.);

    использовать функциональные представления и свойства функций для реше­ния матема­тических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

  • понимать и использовать язык последовательностей (термины, символиче­ские обозначе­ния);

    применять формулы, связанные с арифметической и геометрической про­грессией, и аппа­рат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

  • решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, приме­няя при этом аппарат уравне­ний и неравенств;

    понимать арифметическую и геометрическую прогрессию как функ­ции натураль­ного аргумента; связывать арифметическую прогрессию с линейным ростом, геометриче­скую — с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и ана­лиза статистиче­ских данных.

Выпускник получит возможность приобрести первоначальный опыт орга­низации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представ­лять результаты опроса в виде таб­лицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случай­ного события.

Выпускник получит возможность приобрести опыт проведения случай­ных экспериментов, в том числе с помощью компьютерного моделирова­ния, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.

Наглядная геометрия

Выпускник научится:

  • распознавать на чертежах, рисунках, моделях и в окружающем мире пло­ские и простран­ственные геометрические фигуры;

    вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность:

  • научиться вычислять объёмы пространственных геометрических фи­гур, составлен­ных из прямоугольных параллелепипедов;

    распознавать развёртки куба, прямоугольного параллелепипеда, правиль­ной пира­миды, цилиндра и конуса;

    строить развёртки куба и прямоугольного параллелепипеда;

    определять по линейным размерам развёртки фигуры линейные раз­меры самой фи­гуры и наоборот;

    углубить и развить представления о пространственных геометриче­ских фигурах;

    научиться применять понятие развёртки для выполнения практиче­ских расчётов.

Геометрические фигуры

Выпускник научится:

  • пользоваться языком геометрии для описания предметов окружающего мира и их взаим­ного расположения;

    распознавать и изображать на чертежах и рисунках геометрические фи­гуры и их конфи­гурации;

    находить значения длин линейных элементов фигур и их отношения, гра­дусную меру углов от 0° до 180°, применяя определения, свойства и при­знаки фигур и их элемен­тов, отношения фигур (равенство, подобие, симмет­рии, поворот, параллельный перенос);

    оперировать с начальными понятиями тригонометрии и выполнять элемен­тарные опера­ции над функциями углов;

    решать задачи на доказательство, опираясь на изученные свойства фи­гур и отноше­ний между ними и применяя изученные методы доказательств;

    решать несложные задачи на построение, применяя основные алго­ритмы построения с помощью циркуля и линейки;

    решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

  • овладеть методами решения задач на вычисления и доказательства: методом от против­ного, методом подобия, методом перебора вариан­тов и методом геометрических мест точек;

    приобрести опыт применения алгебраического и тригонометриче­ского аппарата и идей движения при решении геометрических задач;

    овладеть традиционной схемой решения задач на построение с помо­щью циркуля и ли­нейки: анализ, построение, доказательство и исследова­ние;

    научиться решать задачи на построение методом геометрического места точек и мето­дом подобия;

    приобрести опыт исследования свойств планиметрических фигур с по­мощью компьютер­ных программ;

    приобрести опыт выполнения проектов по темам «Геометрические пре­образования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

  • использовать свойства измерения длин, площадей и углов при реше­нии задач на нахожде­ние длины отрезка, длины окружности, длины дуги окруж­ности, градусной меры угла;

    вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кру­гов и секторов;

    вычислять длину окружности, длину дуги окружности;

    вычислять длины линейных элементов фигур и их углы, используя фор­мулы длины ок­ружности и длины дуги окружности, формулы площадей фи­гур;

    решать задачи на доказательство с использованием формул длины окруж­ности и длины дуги окружности, формул площадей фигур;

    решать практические задачи, связанные с нахождением геометриче­ских величин (исполь­зуя при необходимости справочники и технические сред­ства).

Выпускник получит возможность научиться:

  • вычислять площади фигур, составленных из двух или более прямоугольни­ков, параллело­граммов, треугольников, круга и сектора;

    вычислять площади многоугольников, используя отношения равновелико­сти и равносос­тавленности;

    применять алгебраический и тригонометрический аппарат и идеи движе­ния при реше­нии задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

  • вычислять длину отрезка по координатам его концов; вычислять коорди­наты сере­дины отрезка;

    использовать координатный метод для изучения свойств прямых и окруж­ностей.

Выпускник получит возможность:

  • овладеть координатным методом решения задач на вычисления и дока­зательства;

    приобрести опыт использования компьютерных программ для ана­лиза частных слу­чаев взаимного расположения окружностей и прямых;

    приобрести опыт выполнения проектов на тему «Применение коорди­натного метода при решении задач на вычисления и доказатель­ства».

Векторы

Выпускник научится:

  • оперировать с векторами: находить сумму и разность двух векторов, задан­ных геометри­чески, находить вектор, равный произведению заданного вектора на число;

    находить для векторов, заданных координатами: длину вектора, коорди­наты суммы и разности двух и более векторов, координаты произведе­ния вектора на число, применяя при необходимости сочетатель­ный, переместительный и распределительный законы;

    вычислять скалярное произведение векторов, находить угол между векто­рами, устанавли­вать перпендикулярность прямых.

Выпускник получит возможность:

  • овладеть векторным методом для решения задач на вычисления и дока­зательства;

    приобрести опыт выполнения проектов на тему «применение вектор­ного метода при ре­шении задач на вычисления и доказательства».

 

Содержание основного общего образования по учебному предмету

АРИФМЕТИКА

Натуральные числа.

Натуральный ряд. Десятичная сис­тема счисления. Арифметические действия с натураль­ными числами. Свойства арифметиче­ских действий.

Степень с натуральным показателем.

Числовые выражения, значение числового выражения. По­рядок действий в числовых выраже­ниях, использование ско­бок. Решение текстовых задач ариф­метическими спосо­бами.

Делители и кратные. Свойства и признаки делимости. Простые и состав­ные числа. Разложе­ние натурального числа на простые множители. Деление с остатком.

Дроби.

Обыкновенные дроби. Основное свойство дроби. Сравнение обыкно­венных дробей. Арифме­тические действия с обыкновенными дро­бями. Нахождение части от целого и це­лого по его части.

Десятичные дроби. Сравнение десятичных дробей. Ариф­метические дейст­вия с десятич­ными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновен­ной в виде десятичной.

Проценты; нахождение процентов от величины и величи­ны по ее процен­там. Отноше­ние; выражение отношения в процентах. Пропорция; основное свойство пропорции.

Решение текстовых задач арифметическими способами.

Рациональные числа.

Положительные и отрицательные числа, модуль числа. Множество целых чисел. Множе­ство рациональных чисел; рациональное число как отношение m/n,гдет — целое число, п— натуральное число. Сравнение рацио­нальных чисел. Арифметические дейст­вия с рациональными числами. Свойства арифметиче­ских действий. Степень с це­лым показате­лем.

Действительные числа.

Квадратный корень из числа. Ко­рень третьей сте­пени.

Понятие об иррациональном числе. Иррациональность числа и несоизме­римость сто­роны и диагонали квадрата. Десятичные приближения иррациональных чисел.

Множество действительных чисел; представление действи­тельных чисел в виде бесконеч­ных десятичных дробей. Срав­нение действительных чисел.

Координатная прямая. Изображение чисел точками коор­динатной прямой. Числовые проме­жутки.

Измерения, приближения, оценки.

Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длитель­ность процессов в окру­жающем мире. Выделение мно­жителя степени 10 в записи числа.

Приближенное значение величины, точность приближе­ния. Округление нату­ральных чисел и десятичных дробей. Прикидка и оценка результатов вычис­лений.

АЛГЕБРА

Алгебраические выражения.

Буквенные выражения (выражения с перемен­ными). Числовое значение буквенного выраже­ния. Допустимые значе­ния переменных. Подстановка

выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество.

Степень с натуральным показателем и ее свойства. Одно­члены и много­члены. Степень многочлена. Сложение, вычи­тание, умножение многочленов. Формулы сокращенного умно­же­ния: квадрат суммы и квадрат разности. Фор­мула разности квадратов. Преобразова­ние целого выражения в много­член. Разложение многочленов на множители. Многочлены с одной перемен­ной. Корень многочлена. Квадратный трехчлен; разло­жение квадратного трех­члена на множители.

Алгебраическая дробь. Основное свойство алгебраической дроби. Сложе­ние, вычитание, умножение, деление алгебраи­ческих дробей. Степень с це­лым показателем и ее свойства.

Рациональные выражения и их преобразования. Доказа­тельство тождеств.

Квадратные корни. Свойства арифметических квадратных корней и их приме­нение к преобра­зованию числовых выра­жений и вычислениям.

Уравнения.

Уравнение с одной переменной. Корень урав­нения. Свойства числовых равенств. Равносиль­ность уравнений.

Линейное уравнение. Квадратное уравнение: формула кор­ней квадратного уравнения. Теорема Виета. Решение урав­нений, сводящихся к линейным и квадратным. Примеры ре­шения уравнений третьей и четвертой степени. Реше­ние дробно-рациональных уравнений.

Уравнение с двумя переменными. Линейное уравнение с дву­мя перемен­ными, примеры решения уравнений в целых числах.

Система уравнений с двумя переменными. Равносильность систем. Сис­темы двух линей­ных уравнений с двумя перемен­ными; решение подстанов­кой и сложением. Примеры реше­ния систем нелинейных уравнений с двумя переменными.

Решение текстовых задач алгебраическим способом.

Декартовы координаты на плоскости. Графическая интер­претация уравне­ния с двумя переменными. График линейно­го уравнения с двумя перемен­ными; угловой коэффициент прямой; условие параллельности прямых. Гра­фики простей­ших нелинейных уравнений: парабола, гипербола, окруж­ность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства.

Числовые неравенства и их свойства.Неравенство с одной переменной. Равносильность нера­венств. Линейные нера­венства с одной переменной. Квадрат­ные неравенства. Сис­темы нера­венств с одной переменной.

ФУНКЦИИ

Основные понятия.

Зависимости между величинами. По­нятие функции. Об­ласть определения и множество значений функции. Способы задания функ­ции. График функции. Свой­ства функций, их отображение на графике. Примеры графи­ков зависимостей, отражающих реальные про­цессы.

Числовые функции.

Функции, описывающие прямую и обратную пропорцио­нальные зависимости, их гра­фики и свойства. Линейная функция, ее график и свойства. Квадра­тичная функция, ее гра­фик и свойства. Степен­ные функции с натуральными показателями 2 и 3, их графики и свой­ства. Гра­фики функции у = IxI

Числовые последовательности.

Понятие числовой по­следовательности. Зада­ние последовательности рекуррентной форму­лой и формулой л-го члена.

Арифметическая и геометрическая прогрессии. Формулы л-го члена арифмети­ческой и геометрической прогрессий, суммы первых пчленов. Изобра­жение членов арифметиче­ской и геометрической прогрессий точками координатной плоскости. Линейный и экспоненци­альный рост. Сложные про­центы.

ВЕРОЯТНОСТЬ И СТАТИСТИКА

Описательная статистика.

Представление данных в виде таблиц, диа­грамм, графиков. Случайная изменчивость. Ста­тистические характеристики набора данных: среднее арифме­тическое, медиана, наиболь­шее и наимень­шее значения, раз­мах. Представление о выборочном исследовании.

Случайные события и вероятность.

Понятие о слу­чайном опыте и случай­ном событии. Частота случайного события. Статистиче­ский подход к понятию вероятности. Вероятности противоположных событий. Достоверные и не­возможные события. Равновозможность событий. Классиче­ское определе­ние вероятности.

Комбинаторика.

Решение комбинаторных задач перебо­ром вариантов. Ком­бинаторное правило умноже­ния. Переста­новки и факториал.

ГЕОМЕТРИЯ

Наглядная геометрия

Наглядные представления о фигу­рах на плоско­сти: прямая, отрезок, луч, угол, ломаная, мно­гоугольник, окружность, круг. Четырехугольник, прямоуголь­ник, квадрат. Треуголь­ник, виды треугольни­ков. Правильные многоугольники. Изображение геометрических фи­гур. Взаим­ное расположение двух прямых, двух окружностей, прямой и окружно­сти.

Длина отрезка, ломаной. Периметр многоугольника. Еди­ницы измерения длины. Измере­ние длины отрезка, построе­ние отрезка заданной длины.

Виды углов. Градусная мера угла. Измерение и построение углов с помо­щью транспор­тира.

Понятие площади фигуры; единицы измерения площади. Площадь прямо­угольника и площадь квадрата. Приближенное измерение площадей фигур на клетчатой бумаге. Равновели­кие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепи­пед, призма, пирамида, шар, сфера, конус, цилиндр. Изображе­ние пространственных фигур. Примеры се­чений. Многогранники. Правиль­ные многогранники. Приме­ры разверток многогранни­ков, цилиндра и ко­нуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепи­педа, куба.

Понятие о равенстве фигур. Центральная, осевая и зе­ркальная симметрии. Изображение симметричных фигур.

Геометрические фигуры.

Прямые и углы. Точка, прямая, плоскость. Отре­зок, луч. Угол. Виды углов. Вертикаль­ные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикуляр­ные прямые. Тео­ремы о параллель­ности и перпендикулярно­сти прямых. Перпендикуляр и наклонная к прямой. Середин­ный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного пер­пендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедрен­ные и равносторонние треугольни­ки; свойства и признаки равнобед­ренного треугольника. Приз­наки равенства треугольников. Неравен­ство треугольника. Соотношения между сторо­нами и углами треугольника. Сум­ма углов треугольника. Внешние углы треуголь­ника. Теорема Фалеса. Подобие треугольников. Признаки подобия треуголь­ников. Тео­рема Пифа­гора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треуголь­ника и углов от 0 до 180°; приведение к острому углу. Решение прямо­угольных тре­угольников. Основное тригонометрическое тождество. Форму­лы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косину­сов и те­орема синусов. Замечатель­ные точки треугольника.

Четырехугольник. Параллелограмм, его свойства и призна­ки. Прямоуголь­ник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапе­ции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого много­угольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Централь­ный угол, вписан­ный угол; величина вписанного угла. Взаим­ное расположение прямой и окружности, двух окружно­стей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоуголь­ники. Окружность, вписанная в тре­угольник, и окружность, описанная около треугольника. Впи­санные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фи­гур. Понятие о дви­жении: осе­вая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Построения с помощью циркуля и линейки. Основные за­дачи на построе­ние: деление отрезка пополам; построение уг­ла, равного данному; построе­ние треугольника по трем сторо­нам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на правных частей.

Решение задач на вычисление, доказательство и построе­ние с использова­нием свойств изученных фигур.

Измерение геометрических величин.

Длина отрезка. Расстояние от точки до прямой. Расстояние между параллель­ными пря­мыми.

Периметр многоугольника.

Длина окружности, число л; длина дуги окружности.

Градусная мера угла, соответствие между величиной цен­трального угла и дли­ной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фи­гуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь много­угольника. Площадь круга и площадь сектора. Соотно­шение между площадями подобных фигур.

Решение задач на вычисление и доказательство с исполь­зованием изучен­ных формул.

Координаты.

Уравнение прямой. Координаты середины отрезка. Фор­мула расстояния между двумя точками плоско­сти. Уравнение окружности.

Векторы.

Длина (модуль) вектора. Равенство векторов. Коллинеарные век­торы. Координаты век­тора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеар­ным векторам. Скалярное произведе­ние векторов.

Формы организации образовательного процесса

Предлагаемая программа позволяет обеспечить формирование, как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определѐнных во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

Более разнообразными становятся формы работы, среди которых предпочтения отдаются:

парно-групповой работе,

проектной деятельности и ролевой игре,

усиливается значимость принципов индивидуализации и дифференциации обучения,

большее значение приобретает использование проектной методики и современных технологий обучения математике (в том числе информационных),

экскурсии,

практикумы.

В учебно-воспитательном процессе происходят существенные изменения, а именно:

в общении между учителем и учениками на смену авторитарного стиля приходит учебное сотрудничество / партнерство;

парные и групповые формы работы доминируют над фронтальными;

ученик и учитель в процессе обучения все время ставятся в ситуацию выбора (примеров, задач, последовательности работы и др.), проявляя самостоятельность в выборе того или иного дополнительного материала в соответствии с потребностями и интересами учащихся, что придает процессу обучения математике личностный смысл;

последовательно развиваются у школьников рефлексивные умения — умения видеть себя со стороны, самостоятельно оценивать свои возможности и потребности.

Технологии обучения при организации процесса обучения в рамках данной программы предполагается применение следующих педагогических технологий обучения:

организация самостоятельной работы,

проектная деятельность,

творческая деятельность,

развитие критического мышления через чтение и письмо,

организация группового взаимодействия,

ИКТ-технология,

технология дискуссий,

метод исследования,

здоровье - сберегающие технологии,

проблемное обучение,

игровые технологии,

технология дебатов,

и др.

Виды и формы контроля согласно требованиям стандарта и локальным актам:

Текущий контроль: тематические срезы, тест, устный опрос – систематическая контрольно-корригирующая функция проверки.

Тематический контроль. Тематический план предусматривает проверку усвоения и овладения учащимися соответствующими навыками, умениями в результате изучения темы на заключительных уроках.

Промежуточный контроль: проверочная работа, тест, самостоятельная работа, проект - проверка овладения материалом большого объема, например изученного за учебную четверть или за полугодие. Этот вид проверки может выявить общее состояние успеваемости учащихся класса.

Итоговый контроль: портфолио, контрольная работа, тест – проверка навыков и умений в конце каждого года обучения, итоговая аттестация.

Тематическое планирование учебного материала


 

Название раздела и тем, входящих в данный раздел программы

Количество часов, отводимых на раздел, тему

Характеристика основных видов учебной деятельности обучающихся

Математика

5 – 6 класс

350

 

Натуральные числа

50

Описывать свойства натурального ряда. Читать и записывать натуральные числа, сравнивать и упорядочивать их. Выполнять вычисления с натуральными числами; вы­числять значения степеней. Формулировать свойства арифметических действий, записывать их с помощью букв, преобразовывать на их основе числовые выражения. Анализировать и осмысливать текст задачи, пере­формулировать условие, извлекать необходимую ин­формацию, моделировать условие с помощью схем, ри­сунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответ­ствие условию. Формулировать определения делителя и кратного, простого числа и составного числа, свойства и признаки делимости. Доказывать и опровергать с помощью контрприме­ров утверждения о делимости чисел. Классифицировать натуральные числа (четные и нечетные, по остаткам от де­ления на 3 и т. п.). Исследовать простейшие числовые закономерности, проводить числовые эксперименты (в том числе с исполь­зованием калькулятора, компьютера)

Дроби

120

Моделировать в графической, предметной форме по­нятия и свойства, связанные с понятием обыкновенной дроби. Формулировать, записывать с помощью букв основ­ное свойство обыкновенной дроби, правила действий с обыкновенными дробями. Преобразовывать обыкновенные дроби, сравнивать и упорядочивать их. Выполнять вычисления с обыкновен­ными дробями. Читать и записывать десятичные дроби. Представ­лять обыкновенные дроби в виде десятичных и десятич­ные в виде обыкновенных; находить десятичные прибли­жения обыкновенных дробей. Сравнивать и упорядочивать десятичные дроби. Вы­полнять вычисления с десятичными дробями. Использовать эквивалентные представления дробных чисел при их сравнении, при вычислениях. Выполнять прикидку и оценку в ходе вычислений. Объяснять, что такое процент. Представлять процен­ты в виде дробей и дроби в виде процентов. Осуществлять поиск информации (в СМИ), содержа­щей данные, выраженные в процентах, интерпретировать их. Приводить примеры использования отношений на практике. Решать задачи на проценты и дроби (в том числе за­дачи из реальной практики), используя при необходимости калькулятор; использовать понятия отношения и пропор­ции при решении задач. Анализировать и осмысливать текст задачи, пере­формулировать условие, извлекать необходимую ин­формацию, моделировать условие с помощью схем, ри­сунков, реальных предметов; строить логическую цепочку рассуждений; критически оценивать полученный ответ, осуществлять самоконтроль, проверяя ответ на соответ­ствие условию. Проводить несложные исследования, связанные со свойствами дробных чисел, опираясь на числовые экспе­рименты (в том числе с использованием калькулятора, компьютера)

Рациональные числа

40

Приводить примеры использования в окружающем мире положительных и отрицательных чисел (температура, выигрыш — проигрыш, выше — ниже уровня моря и т. п.). Изображать точками координатной прямой положи­тельные и отрицательные рациональные числа. Характеризовать множество целых чисел, множество рациональных чисел. Формулировать и записывать с помощью букв свойства действий с рациональными числами, применять для преобразования числовых выражений. Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами.

Измерения, приближения, оценки. Зависимости между величинами

120

Выражать одни единицы измерения величины в дру­гих единицах (метры в километрах, минуты в часах и т. п.).Округлять натуральные числа и десятичные дроби. Выполнять прикидку и оценку в ходе вычислений. Моделировать несложные зависимости с помощью формул; выполнять вычисления по формулам. Использовать знания о зависимостях между величи­нами (скорость, время, расстояние; работа, производи­тельность, время и т. п.) при решении текстовых задач

Элементы алгебры

25

Читать и записывать буквенные выражения, состав­лять буквенные выражения по условиям задач. Вычислять числовое значение буквенного выраже­ния при заданных значениях букв. Составлять уравнения по условиям задач. Решать простейшие уравнения на основе зависимостей между компонентами арифметических действий.

Строить на координатной плоскости точки и фигуры по заданным координатам; определять координаты точек

Описательная статистика. Вероятность. Комбинаторика

20

Извлекать информацию из таблиц и диаграмм, выполнять вычисления по табличным данным, сравнивать величины, находить наибольшие и наименьшие значения и др.

Выполнять сбор информации в несложных случаях, представлять информацию в виде таблиц и диаграмм, в том числе с помощью компьютерных программ. Приводить примеры случайных событий, достоверных и невозможных событий. Сравнивать шансы наступления событий; строить речевые конструкции с использованием словосочетаний более вероятно, маловероятно и др. Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций, выделять комби­нации, отвечающие заданным условиям

Наглядная геометрия

45

Распознавать на чертежах, рисунках и моделях гео­метрические фигуры, конфигурации фигур (плоские и пространственные). Приводить примеры аналогов гео­метрических фигур в окружающем мире. Изображать геометрические фигуры и их конфигура­ции от руки и с использованием чертежных инструментов. Изображать геометрические фигуры на клетчатой бумаге. Измерять с помощью инструментов и сравнивать дли­ны отрезков и величины углов. Строить отрезки заданной длины с помощью линейки и циркуля и углы заданной ве­личины с помощью транспортира. Выражать одни едини­цы измерения длин через другие. Вычислять площади квадратов и прямоугольников, используя формулы площади квадрата и площади прямо­угольника. Выражать одни единицы измерения площади через другие. Изготавливать пространственные фигуры из развер­ток; распознавать развертки куба, параллелепипеда, пи­рамиды, цилиндра и конуса. Рассматривать простейшие сечения пространственных фигур, получаемые путем предметного или компьютерного моделирования, опре­делять их вид. Вычислять объемы куба и прямоугольного паралле­лепипеда, используя формулы объема куба и объема прямоугольного параллелепипеда. Выражать одни еди­ницы измерения объема через другие. Исследовать и описывать свойства геометрических фигур (плоских и пространственных), используя экспери­мент, наблюдение, измерение. Моделировать геометри­ческие объекты, используя бумагу, пластилин, проволо­ку и др. Использовать компьютерное моделирование и эксперимент для изучения свойств геометрических объ­ектов. Находить в окружающем мире плоские и простран­ственные симметричные фигуры. Решать задачи на нахождение длин отрезков, пери­метров многоугольников, градусной меры углов, площа­дей квадратов и прямоугольников, объемов кубов и пря­моугольных параллелепипедов, куба. Выделять в условии задачи данные, необходимые для ее решения, строить логическую цепочку рассуждений, сопоставлять полу­ченный результат с условием задачи. Изображать равные фигуры, симметричные фигуры

Резерв

30

 

Алгебра 7 – 9 класс

315

 

Действительные числа

15

Описывать множество целых чисел, множество ра­циональных чисел, соотношение между этими множе­ствами. Сравнивать и упорядочивать рациональные числа, выполнять вычисления с рациональными числами, вы­числять значения степеней с целым показателем. Формулировать определение квадратного корня из числа. Использовать график функции у = х2 для нахож­дения квадратных корней. Вычислять точные и прибли­женные значения корней, используя при необходимости калькулятор; проводить оценку квадратных корней. Формулировать определение корня третьей степени; находить значения кубических корней, при необходимо­сти используя калькулятор. Приводить примеры иррациональных чисел; распо­знавать рациональные и иррациональные числа; изобра­жать числа точками координатной прямой. Находить десятичные приближения рациональных и иррациональных чисел; сравнивать и упорядочивать действительные числа. Описывать множество действительных чисел. Использовать в письменной математической речи обозначения и графические изображения числовых мно­жеств, теоретико-множественную символику.

Измерения, приближения, оценки

10

Находить, анализировать, сопоставлять числовые характеристики объектов окружающего мира.

Использовать запись чисел в стандартном виде для выражения размеров объектов, длительности процессов в окружающем мире. Сравнивать числа и величины, записанные с исполь­зованием степени 10. Использовать разные формы записи приближенных значений; делать выводы о точности приближения по записи приближенного значения. Выполнять вычисления с реальными данными. Выполнять прикидку и оценку результатов вычислений

Введение в алгебру

8

Выполнять элементарные знаково-символические действия: применять буквы для обозначения чисел, для записи общих утверждений; составлять буквенные выра­жения по условиям, заданным словесно, рисунком или чертежом; преобразовывать алгебраические суммы и произведения (выполнять приведение подобных слагае­мых, раскрытие скобок, упрощение произведений). Вычислять числовое значение буквенного выражения; находить область допустимых значений перемен­ных в выражении.

Многочлены

45

Формулировать, записывать в символической фор­ме и обосновывать свойства степени с натуральным по­казателем; применять свойства степени для преобразо­вания выражений и вычислений. Выполнять действия с многочленами. Выводить формулы сокращенного умножения, при­менять их в преобразованиях выражений и вычислениях. Выполнять разложение многочленов на множители. Распознавать квадратный трехчлен, выяснять возмож­ность разложения на множители, представлять квадрат­ный трехчлен в виде произведения линейных множителей. Применять различные формы самоконтроля при вы­полнении преобразований

Алгебраические дроби

22

Формулировать основное свойство алгебраической дроби и применять его для преобразования дробей. Выполнять действия с алгебраическими дробями. Представлять целое выражение в виде многочлена, дробное — в виде отношения многочленов; доказывать тождества. Формулировать определение степени с целым показателем. Формулировать, записывать в символической форме и иллюстрировать примерами свойства степени с целым показателем; применять свойства степени для преобразования выражений и вычислений

Квадратные корни

12

Доказывать свойства арифметических квадратных корней; применять их для преобразования выражений. Вычислять значения выражений, содержащих квадратные корни; выражать переменные из геометрических и физических формул. Исследовать уравнение вида х2 = а; находить точные и приближенные корни при а > 0

Уравнения с одной переменной

38

Распознавать линейные и квадратные уравнения, це­лые и дробные уравнения. Решать линейные, квадратные уравнения, а также уравнения, сводящиеся к ним; решать дробно-рацио­нальные уравнения. Исследовать квадратные уравнения по дискрими­нанту и коэффициентам. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления уравнения; решать составленное уравнение; интерпретировать результат

Системы уравнений

30

Определять, является ли пара чисел решением дан­ного уравнения с двумя переменными; приводить при­меры решения уравнений с двумя переменными. Решать задачи, алгебраической моделью которых яв­ляется уравнение с двумя переменными; находить целые решения путем перебора. Решать системы двух уравнений с двумя переменны­ми, указанные в содержании. Решать текстовые задачи алгебраическим способом: переходить от словесной формулировки условия задачи к алгебраической модели путем составления системы уравнений; решать составленную систему уравнений; ин­терпретировать результат. Строить графики уравнений с двумя переменными. Конструировать эквивалентные речевые высказывания с использованием алгебраического и геометрического языков. Решать и исследовать уравнения и системы уравне­ний на основе функционально-графических представле­ний уравнений

Неравенства

20

Формулировать свойства числовых неравенств, ил­люстрировать их на координатной прямой, доказывать алгебраически; применять свойства неравенств при ре­шении задач. Распознавать линейные и квадратные неравенства. Решать линейные неравенства, системы линейных нера­венств. Решать квадратные неравенства на основе гра­фических представлений

Зависимости между величинами

15

Составлять формулы, выражающие зависимости между величинами, вычислять по формулам. Распознавать прямую и обратную пропорциональ­ные зависимости. Решать текстовые задачи на прямую и обратную пропорциональные зависимости (в том числе с контекстом из смежных дисциплин, из реальной жизни)

Числовые функции

35

Вычислять значения функций, заданных формулами (при необходимости использовать калькулятор); со­ставлять таблицы значений функций. Строить по точкам графики функций. Описывать свойства функции на основе ее графического представ­ления. Моделировать реальные зависимости формулами и графиками. Читать графики реальных зависимостей. Использовать функциональную символику для запи­си разнообразных фактов, связанных с рассматриваемы­ми функциями, обогащая опыт выполнения знаковосимволических действий. Строить речевые конструкции с использованием функциональной терминологии. Использовать компьютерные программы для по­строения графиков функций, для исследования положе­ния на координатной плоскости графиков функций в за­висимости от значений коэффициентов, входящих в формулу. Распознавать виды изучаемых функций. Показывать схематически положение на координатной плоскости гра­фиков функций вида у = кх, у = кх +b, у = , у = ах2, у = ах2 + с, у = ах2 + bх + с в зависимости от значений коэффициентов, входящих в формулы. Строить графики изучаемых функций; описывать их свойства

Числовые последовательности. Арифметическая и геометрическая прогрессии

15

Применять индексные обозначения, строить рече­вые высказывания с использованием терминологии, свя­занной с понятием последовательности. Вычислять члены последовательностей, заданных формулой n-го члена или рекуррентной формулой. Устанавливать закономерность в построении последова­тельности, если известны первые несколько ее членов. Изображать члены последовательности точками на ко­ординатной плоскости. Распознавать арифметическую и геометрическую прогрессии при разных способах задания. Выводить на основе доказательных рассуждений формулы общего чле­на арифметической и геометрической прогрессий, суммы первых пчленов арифметической и геометрической про­грессий; решать задачи с использованием этих формул. Рассматривать примеры из реальной жизни, иллю­стрирующие изменение в арифметической прогрессии, в геометрической прогрессии; изображать соответствую­щие зависимости графически. Решать задачи на сложные проценты, в том числе задачи из реальной практики (с использованием кальку­лятора)

Описательная статистика

10

Извлекать информацию из таблиц и диаграмм, вы­полнять вычисления по табличным данным. Определять по диаграммам наибольшие и наименьшие данные, сравнивать величины. Представлять информацию в виде таблиц, столбча­тых и круговых диаграмм, в том числе с помощью компьютерных программ. Приводить примеры числовых данных (цена, рост, время на дорогу и т. д.), находить среднее арифметическое, размах числовых наборов. Приводить содержательные примеры использования средних для описания данных (уровень воды в водоеме, спортивные показатели, определение границ климати­ческих зон)

Случайные события и вероятность

15

Проводить случайные эксперименты, в том числе с помощью компьютерного моделирования, интерпретиро­вать их результаты. Вычислять частоту случайного собы­тия; оценивать вероятность с помощью частоты, получен­ной опытным путем. Решать задачи на нахождение вероятностей событий. Приводить примеры случайных событий, в частности достоверных и невозможных событий, маловероятных со­бытий. Приводить примеры равновероятных событий

Элементы комбинаторики

10

Выполнять перебор всех возможных вариантов для пересчета объектов или комбинаций. Применять правило комбинаторного умножения для решения задач на нахождение числа объектов или ком­бинаций (диагонали многоугольника, рукопожатия, число кодов, шифров, паролей и т. п.). Распознавать задачи на определение числа переста­новок и выполнять соответствующие вычисления. Решать задачи на вычисление вероятности с приме­нением комбинаторики

Множества. Элементы логики

5

Приводить примеры конечных и бесконечных мно­жеств. Находить объединение и пересечение множеств. Приводить примеры несложных классификаций. Использовать теоретико-множественную символику и язык при решении задач в ходе изучения различных разделов курса. Иллюстрировать математические понятия и утверж­дения примерами. Использовать примеры и контрпримеры в аргументации. Конструировать математические предложения с по­мощью связок если ..., то ..., в том и только том слу­чае, логических связок и, или

Резерв

10

 

Геометрия 7 – 9 класс

210

 

Прямые и углы

15

Формулировать определения и иллюстрировать по­нятия отрезка, луча; угла, прямого, острого, тупого и раз­вернутого углов; вертикальных и смежных углов; биссект­рисы угла. Формулировать определения параллельных прямых; углов, образованных при пересечении двух параллельных прямых секущей; перпендикулярных прямых; перпендику­ляра и наклонной к прямой; серединного перпендикуляра к отрезку; распознавать и изображать их на чертежах и рисунках. Объяснять, что такое геометрическое место точек, приводить примеры геометрических мест точек. Формулировать аксиому параллельных прямых. Формулировать и доказывать теоремы, выражаю­щие свойства вертикальных и смежных углов, свойства и признаки параллельных прямых, о единственности пер­пендикуляра к прямой, свойстве перпендикуляра и на­клонной, свойствах биссектрисы угла и серединного пер­пендикуляра к отрезку. Решать задачи на построение, доказательство и вы­числения. Выделять в условии задачи условие и заклю­чение. Опираясь на условие задачи, проводить необхо­димые доказательные рассуждения. Сопоставлять полу­ченный результат с условием задачи

Треугольники

65

Формулировать определения прямоугольного, ост­роугольного, тупоугольного, равнобедренного, равносто­роннего треугольников; высоты, медианы, биссектрисы, средней линии треугольника; распознавать и изобра­жать их на чертежах и рисунках. Формулировать определение равных треугольников. Формулировать и доказывать теоремы о признаках ра­венства треугольников. Объяснять и иллюстрировать неравенство тре­угольника. Формулировать и доказывать теоремы о свойствах и признаках равнобедренного треугольника, соотношени­ях между сторонами и углами треугольника, сумме углов треугольника, внешнем угле треугольника, о средней ли­нии треугольника. Формулировать определение подобных треугольников. Формулировать и доказывать теоремы о призна­ках подобия треугольников, теорему Фалеса. Формулировать определения и иллюстрировать понятия синуса, косинуса, тангенса и котангенса острого угла прямоугольного треугольника. Выводить формулы, выражающие функции угла прямоугольного треугольни­ка через его стороны. Формулировать и доказывать теорему Пифагора. Формулировать определения синуса, косинуса, тан­генса, котангенса углов от 0 до 180°. Выводить формулы, выражающие функции углов от 0 до 180° через функции острых углов. Формулировать и разъяснять основное тригонометрическое тождество. По значениям одной три­гонометрической функции угла вычислять значения дру­гих тригонометрических функций этого угла. Формули­ровать и доказывать теоремы синусов и косинусов. Формулировать и доказывать теоремы о точках пересечения серединных перпендикуляров, биссектрис, медиан, высот или их продолжений. Исследовать свойства треугольника с помощью компьютерных программ. Решать задачи на построение, доказательство и вы­числения. Выделять в условии задачи условие и заключе­ние. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в хо­де решения. Опираясь на данные условия задачи, прово­дить необходимые рассуждения. Интерпретировать полу­ченный результат и сопоставлять его с условием задачи

Четырехугольники

20

Формулировать определения параллелограмма, пря­моугольника, квадрата, ромба, трапеции, равнобедренной и прямоугольной трапеции, средней линии трапеции; распознавать и изображать их на чертежах и рисунках. Формулировать и доказывать теоремы о свойствах и признаках параллелограмма, прямоугольника, квадра­та, ромба, трапеции. Исследовать свойства четырехугольников с по­мощью компьютерных программ. Решать задачи на построение, доказательство и вы­числения. Моделировать условие задачи с помощью чер­тежа или рисунка, проводить дополнительные построения в ходе решения. Выделять на чертеже конфигурации, не­обходимые для проведения обоснований логических шагов решения. Интерпретировать полученный резуль­тат и сопоставлять его с условием задачи

Многоугольники

10

Распознавать многоугольники, формулировать оп­ределение и приводить примеры многоугольников. Формулировать и доказывать теорему о сумме уг­лов выпуклого многоугольника. Исследовать свойства многоугольников с помощью компьютерных программ. Решать задачи на доказательство и вычисления. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные построения в ходе решения. Интерпретировать полученный результат и сопоставлять его с условием задачи

Окружность и круг

20

Формулировать определения понятий, связанных с окружностью, центрального и вписанного углов, секущей и касательной к окружности, углов, связанных с окруж­ностью. Формулировать и доказывать теоремы о вписан­ных углах, углах, связанных с окружностью. Изображать, распознавать и описывать взаимное расположение прямой и окружности. Изображать и формулировать определения впи­санных и описанных многоугольников и треугольников; окружности, вписанной в треугольник, и окружности, описанной около треугольника. Формулировать и доказывать теоремы о вписанной и описанной окружностях треугольника и многоугольника. Исследовать свойства конфигураций, связанных с ок­ружностью, с помощью компьютерных программ. Решать задачи на построение, доказательство и вы­числения. Моделировать условие задачи с помощью чертежа или рисунка, проводить дополнительные по­строения в ходе решения. Выделять на чертеже конфи­гурации, необходимые для проведения обоснований ло­гических шагов решения. Интерпретировать полученный результат и сопоставлять его с условием задачи.

Геометрические преобразования

10

Объяснять и иллюстрировать понятия равенства фигур, подобия. Строить равные и симметричные фигу­ры, выполнять параллельный перенос и поворот. Исследовать свойства движений с помощью компь­ютерных программ. Выполнять проекты по темам геометрических преоб­разований на плоскости

Построения с помощью циркуля и линейки

5

Решать задачи на построение с помощью циркуля и линейки. Находить условия существования решения, выпол­нять построение точек, необходимых для построения ис­комой фигуры. Доказывать, что построенная фигура удовлетворяет условиям задачи (определять число реше­ний задачи при каждом возможном выборе данных)

Измерение геометрических величин

25

Объяснять и иллюстрировать понятие периметра многоугольника. Формулировать определения расстояния между точка­ми, от точки до прямой, между параллельными прямыми. Формулировать и объяснять свойства длины, гра­дусной меры угла, площади. Формулировать соответствие между величиной центрального угла и длиной дуги окружности. Объяснять и иллюстрировать понятия равновеликих и равносоставленных фигур. Выводить формулы площадей прямоугольника, па­раллелограмма, треугольника и трапеции, а также фор­мулу, выражающую площадь треугольника через две сто­роны и угол между ними, длину окружности, площадь круга. Находить площадь многоугольника разбиением на треугольники и четырехугольники. Объяснять и иллюстрировать отношение площадей подобных фигур. Решать задачи на вычисление линейных величин, градусной меры угла и площадей треугольников, четы­рехугольников и многоугольников, длины окружности и площади круга. Опираясь на данные условия задачи, на­ходить возможности применения необходимых формул, преобразовывать формулы. Использовать формулы для обоснования доказательных рассуждений в ходе решения. Интерпретировать полученный результат и сопо­ставлять его с условием задачи

Координаты

10

Объяснять и иллюстрировать понятие декартовой системы координат. Выводить и использовать формулы координат се­редины отрезка, расстояния между двумя точками пло­скости, уравнения прямой и окружности. Выполнять проекты по темам использования коор­динатного метода при решении задач на вычисления и доказательства

Векторы

10

Формулировать определения и иллюстрировать по­нятия вектора, длины (модуля) вектора, коллинеарных векторов, равных векторов. Вычислять длину и координаты вектора. Находить угол между векторами. Выполнять операции над векторами. Выполнять проекты по темам использования вектор­ного метода при решении задач на вычисления и доказа­тельства

Элементы логики

5

Воспроизводить формулировки определений; конструировать несложные определения самостоятель­но. Воспроизводить формулировки и доказательства изученных теорем, проводить несложные доказательства самостоятельно, ссылаться в ходе обоснований на опре­деления, теоремы, аксиомы

Резерв

15

 

Учебно-методическое литература

Атанасян Л.С. и др., Геометрия 7-9 кл .Учебник для общеобразовательных учреждений.– Москва «Просвещение»

Алгебра: учебник для 7 кл. общеобразоват. учреждений /под ред. С.А. Теляковского, - М.: Просвещение

Алгебра: учебник для 8 кл. общеобразоват. учреждений /под ред. С.А. Теляковского, - М.: Просвещение

Алгебра: учебник для 9 кл. общеобразоват. учреждений /под ред. С.А. Теляковского, - М.: Просвещение

Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Учебник « Математика» . 5 класс. Учебник для общеобразовательных учреждений.– М.: «Мнемозина»

Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Учебник « Математика» . 6 класс. Учебник для общеобразовательных учреждений.– М.: «Мнемозина»

Ерина Т.М. рабочая тетрадь по математике. 5 класс. К учебнику Н.Я.Виленкина «Математика. 5 класс». М.: Экзамен

Ерина Т.М. рабочая тетрадь по математике. 6 класс. К учебнику Н.Я.Виленкина «Математика. 6 класс». М.: Экзамен

Звавич Л.И., Кузнецова Л.В. Суворова С.Б. Дидактические материалы по алгебре для 7 класса. – М.: Просвещение

Звавич Л.И., Кузнецова Л.В. Суворова С.Б. Дидактические материалы по алгебре для 8 класса. – М.: Просвещение

Зив.Б.Г., Мейлер В.М. . Дидактические материалы по геометрии для 7 класса. – М.: Просвещение

Зив.Б.Г., Мейлер В.М. . Дидактические материалы по геометрии для 8 класса. – М.: Просвещение

Зив.Б.Г., Мейлер В.М. . Дидактические материалы по геометрии для 9 класса. – М.: Просвещение

Контрольно- измерительные материалы: Математика 5 класс к учебнику Н.Я.Виленкина. Москва «ВАКО» 2011год. Составитель: Л.П.Попова.

Контрольно- измерительные материалы: Математика 6 класс к учебнику Н.Я.Виленкина. Москва «ВАКО» 2011год. Составитель: Л.П.Попова.

Контрольно- измерительные материалы: Алгебра 7 класс к учебнику Ю.Н.Макарычева и др. Москва «ВАКО» Составитель: Л.И.Мартышова.

Контрольно- измерительные материалы: Алгебра 8 класс к учебнику Ю.Н.Макарычева и др. Москва «ВАКО» Составитель: Л.И.Мартышова.

Контрольно- измерительные материалы: Алгебра 9 класс к учебнику Ю.Н.Макарычева и др. Москва «ВАКО» Составитель: Л.И.Мартышова.

Попов М.А. Контрольные и самостоятельные работы по математике. 5 класс. К учебнику Виленкина Н.Я. и др.

Попов М.А. Контрольные и самостоятельные работы по математике. 6 класс. К учебнику Виленкина Н.Я. и др.

Рабинович Е.М. «Задачи и упражнения на готовых чертежах. 7-9 классы. Геометрия.-М.: Илекса, Харьков:Гимназия

Чесноков А.С., Нешков К.И. Дидактические материалы по математике для 5 класса. – М.: Просвещение

Чесноков А.С., Нешков К.И. Дидактические материалы по математике для 6 класса. – М.: Просвещение

в формате Microsoft Word (.doc / .docx)
Комментарии
Комментариев пока нет.