Рабочая программа по физике, 9 класс, УМК: Генденштейн Л.Э.
Предмет: Класс: УМК: Количество часов: |
Физика 9 Л.Э. Генденштейн и др. 68 |
Пояснительная записка
Данная программа разработана в соответствии с федеральным компонентом Государственного стандарта основного общего образования по физике с учетом Примерной программы основного общего образования.
Рабочая программа составлена на на 2011-2012 учебный год основе примерной программы авторов Л.Э. Генденштейна и В.И. Зинковского для 9–ых классов общеобразовательных учреждений основного общего образования (базовый уровень) по физике. Поурочное планирование курса физики для 9 классов на 2 часа в неделю.
Программа рассчитана на работу по учебнику Физика 9 класс Авторы: Л.Э. Генденштейн, А.Б. Кайдалов, В.Б. Кожевников. Задачник Физика 9 класс Авторы: Л.Э.Генденштейн, Л.А.Кирик, И.М. Гельфгат, И.Ю. Ненашев.
В пояснительной записке сформулированы цели изучения физики в основной школе:
- освоение знаний о механических, тепловых, электромагнитных и квантовых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирования на этой основе представлений о физической картине мира;
- овладение умениями проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений в виде таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе решения физических задач и выполнения экспериментальных исследований; способности к самостоятельному приобретению новых знаний по физике в соответствии с жизненными потребностями и интересами;
- воспитание убеждённости в возможности познать природу, необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества; уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры;
- применение полученных знаний и умений для решения практических задач в повседневной жизни, обеспечения безопасности своей жизни.
Физика является наиболее общей из наук о природе: именно при изучении физики ученик открывает для себя основные закономерности природных явлений и связи между ними. И цель обучения - не запоминание фактов и формулировок, а формирование «человека познающего», то есть такого, который любит думать, сопоставлять, ставить вопросы и делать выводы.
Порядок изложения учебных тем в данной программе учитывает возрастные особенности учащихся и уровень их математической подготовки.
В 9 классе перед учениками надо ставить новые, более сложные задачи. Важнейшая из них – умение строить и исследовать математические модели, поскольку школьники уже знакомы с векторами и действиями над ними, со свойствами линейной и квадратичной функций.
Отработанным годами «полигоном» для обучения построению и исследованию математических моделей являются основы механики. Здесь с помощью нескольких простых в математическом смысле соотношений — трёх законов Ньютона и выражений для сил упругости, тяготения и трения - можно сформулировать и подробно рассмотреть много «учебных ситуаций». Поэтому значительная часть учебного года посвящена изучению основ механики и решению задач по этой теме.
Во втором полугодии рассматривается тема, которая для 9-го класса является, по существу, вводной: «Атомы и звёзды». Расчётных задач в этой теме нет, поэтому при ее изучении важно сделать акцент на мировоззренческие вопросы, показать, что природа неисчерпаема как в малом, так и в огромном. Рассматривающиеся здесь явления и законы изучены в последнее столетие, а некоторые — даже в последние десятилетия. Желательно, чтобы при изучении таких тем у учащихся сформировалось представление, что «наука не является и никогда не станет законченной книгой» (А. Эйнштейн). Хорошо, если ученики проникнутся при этом идеей познаваемости Вселенной и гордостью за человеческий разум, который смог проникнуть вглубь материи и в необъятные просторы Вселенной.
Предлагаемая программа реализуется с помощью учебно-методических комплектов (УМК)
УМК для каждого класса включает:
- учебник;
- задачник;
- методические материалы для учителя;
- самостоятельные и контрольные работы;
- тетрадь для лабораторных работ;
- материалы для подготовки к государственной итоговой аттестации «РИА: шаг за шагом»;
- компакт-диск с анимациями и видеофрагментами.
СОДЕРЖАНИЕ ПРОГРАММЫ
9 класс
(68 ч; 2 ч в неделю)
МЕХАНИЧЕСКИЕ ЯВЛЕНИЯ
1. Механическое движение
Механическое движение. Относительность движения. Система отсчёта. Траектория и путь. Перемещение. Сложение векторов. Скорость прямолинейного равномерного движения. Графики зависимости пути и скорости от времени. Средняя скорость неравномерного движения. Мгновенная скорость.Прямолинейное равноускоренное движение. Ускорение. Зависимость скорости и пути от времени при прямолинейном равноускоренном движении. Равномерное движение по окружности. Период и частота обращения. Направление скорости при движении по окружности. Ускорение при равномерном движении по окружности.
Демонстрации
Механическое движение.
Относительность движения.
Равномерное прямолинейное движение.
Неравномерное движение.
Равноускоренное прямолинейное движение.
Равномерное движение по окружности.
Лабораторные работы
1. Изучение прямолинейного равномерного движения.
2. Изучение прямолинейного равноускоренного движения.
2. Законы движения и силы
Взаимодействия и силы. Силы в механике. Сила упругости. Измерение и сложение сил. Закон инерции. Инерциальные системы отсчёта и первый закон Ньютона. Второй закон Ньютона. Масса. Сила тяжести и ускорение свободного падения. Третий закон Ньютона. Свойства сил, с которыми тела взаимодействуют друг с другом. Вес и невесомость. Закон всемирного тяготения. Движение искусственных спутников Земли и космических кораблей. Первая и вторая космические скорости. Силы трения. Сила трения скольжения. Сила трения покоя.
Демонстрации
Взаимодействие тел.
Явление инерции.
Зависимость силы упругости от деформации пружины.
Сложение сил.
Второй закон Ньютона.
Третий закон Ньютона.
Свободное падение тел в трубке Ньютона.
Невесомость.
Сила трения.
Лабораторные работы
3. Исследование зависимости силы тяжести от массы тела.
4. Сложение сил, направленных вдоль одной прямой и под углом.
5. Исследование зависимости силы упругости от удлинения пружины. Измерение
жесткости пружины.
6. Исследование силы трения скольжения. Измерение коэффициента трения
скольжения.
3. Законы сохранения в механике
Импульс тела и импульс силы. Закон сохранения импульса. Реактивное движение. Механическая работа. Мощность. Механическая энергия. Потенциальная и кинетическая энергии. Закон сохранения механической энергии.
Демонстрации
Закон сохранения импульса.
Реактивное движение.
Изменение энергии тела при совершении работы.
Превращения механической энергии из одной формы в другую.
Закон сохранения энергии.
Лабораторная работа
7. Измерение мощности человека.
4. Механические колебания и волны (9 ч)
Механические колебания. Период, частота и амплитуда колебаний. Математический и пружинный маятники. Превращения энергии при колебаниях. Свободные и вынужденные колебания. Резонанс. Механические волны. Продольные и поперечные волны. Длина волны, скорость и частота волны. Источники звука. Распространение звука. Скорость звука. Громкость, высота и тембр звука.
Демонстрации
Механические колебания.
Колебания математического и пружинного маятников.
Преобразование энергии при колебаниях.
Вынужденные колебания.
Резонанс.
Механические волны.
Поперечные и продольные волны.
Звуковые колебания.
Условия распространения звука.
Лабораторные работы
9. Изучение колебаний пружинного маятника.
АТОМЫ И ЗВЁЗДЫ (13 ч)
5. Атом и атомное ядро (9 ч)
Излучение и поглощение света атомами. Спектры излучения) и спектры поглощения. Фотоны. Строение атома. Опыт Резерфорда: открытие атомного ядра.| Планетарная модель атома. Строение атомного ядра. Открытие радиоактивности. Состав радиоактивного излучения. Радиоактивные превращения. Энергия связи ядра. Реакции деления и синтеза. Цепная ядерная реакция. Ядерный реактор. Атомная электростанция. Управляемый термоядерный синтез. Влияние радиации на живые организмы.
Демонстрация
Модель опыта Резерфорда.
Лабораторная работа
10. Наблюдение линейчатых спектров излучения.
6. Строение и эволюция Вселенной
Солнечная система. Солнце. Природа тел Солнечной системы. Звёзды. Разнообразие звёзд. Судьбы звёзд. Галактики. Происхождение Вселенной.
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ
основной школы
В результате изучения физики учащиеся должны:
знать/понимать
- смысл понятий: физическое явление, физический закон,
вещество, взаимодействие, электрическое поле, магнитное поле,
волна, атом, атомное ядро, ионизирующие излучения;
- смысл физических величин: путь, скорость, ускорение, масса, плотность, сила, давление, импульс, работа, мощность, кинетическая энергия, потенциальная энергия, коэффициент полезного действия, внутренняя энергия, температура, количество теплоты, удельная теплоёмкость, влажность воздуха, электрический заряд, сила электрического тока, электрическое напряжение, электрическое сопротивление, работа и мощность электрического тока, фокусное расстояние линзы;
- смысл физических законов: Паскаля, Архимеда и Ньютона, всемирного тяготения, сохранения импульса и механической энергии, сохранения энергии в тепловых процессах, сохранения электрического заряда, законов Ома для участка электрической цепи, Джоуля — Ленца, прямолинейного распространения света, отражения света;
уметь
- описывать и объяснять физические явления: равномерное прямолинейное движение, равноускоренное прямолинейное движение, передачу давления жидкостями и газами, плавание тел, механические колебания и волны, диффузию, теплопроводность, конвекцию, излучение, испарение, конденсацию, кипение, плавление, кристаллизацию, электризацию тел, взаимодействие электрических зарядов, взаимодействие магнитов, действие магнитного поля на проводник с током, тепловое действие тока, электромагнитную индукцию, отражение, преломление и дисперсию света;
- представлять результаты измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости: пути от времени, силы упругости от удлинения пружины, силы трения от силы нормального давления, периода колебаний маятника от длины нити, периода колебаний груза на пружине от массы груза и от жесткости пружины, температуры остывающего тела от времени, силы тока от напряжения на участке цепи, угла отражения от угла падения света, угла преломления от угла падения света;
- приводить примеры практического использования физических знаний о механических, тепловых, электромагнитных иквантовых явлениях;
- решать задачи на применение изученных физических законов;
- осуществлять самостоятельный поиск информации естественно-научного содержания с использованием различных источников (учебных текстов, справочных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета), её обработку и представлять в разных формах (словесно, с помощью графиков, математических символов, рисунков и структурных схем). Использовать приобретённые знания и умения в практической деятельности и повседневной жизни:
• для обеспечения безопасности в процессе использования транспортных средств, электробытовых приборов, электронной техники; контроля за исправностью электропроводки, водопровода, сантехники и газовых приборов в квартире; рационального применения простых механизмов; оценки безопасности радиационного фона.
В соответствии с образовательным стандартом второго поколения по физике для 7—9-го классов основной школы выпускник должен иметь представление о строении Солнечной системы, нашей Галактики и иных галактик, источнике энергии Солнца и других звёзд, эволюции и происхождении Вселенной.
Характеристика учебного предмета
Задачами обучения физике на данном этапе физического образования являются:
- формирование знаний о физических основах устройства и функционирования технических объектов; формирование экспериментальных умений; формирование научного мировоззрения: представлений о материи, ее видах, о движении материи и его формах,о пространстве и времени, о роли опыта в процессе научного познания и истинности знания, о причинно-следственных отношениях; формирование представлений о роли физики в жизни общества: влияние развития физики на развитие техники, на возникновение и решение экологических проблем;
- развитие у учащихся функциональных механизмов психики: восприятия, мышления (эмпирического и теоретического, логического и диалектического), памяти, речи, воображения;
- формирование и развитие свойств личности: творческих способностей, интереса к изучению физики, самостоятельности, коммуникативности, критичности, рефлексии.
В основу курса физики положен ряд идей, которые можно рассматривать как принципы его построения.
Идея целостности. В соответствии с ней курс является логически завершенным, он содержит материал из всех разделов физики, включает как вопросы классической, так и современной физики; уровень представления курса учитывает познавательные возможности учащихся.
Идея преемственности. Содержание курса учитывает подготовку, полученную учащимися на предшествующем этапе при изучении естествознания.
Идея вариативности. Ее реализация позволяет выбрать учащимся собственную «траекторию» изучения курса. Для этого предусмотрено осуществление уровневой дифференциации: в программе заложены два уровня изучения материала — обычный, соответствующий образовательному стандарту, и повышенный.
Идея генерализации. В соответствии с ней выделены такие стержневые понятия, как энергия, взаимодействие, вещество, поле. Ведущим в курсе является и представление о структурных уровнях материи.
Идея гуманитаризации. Ее реализация предполагает использование гуманитарного потенциала физической науки, осмысление связи развития физики с развитием общества, мировоззренческих, нравственных, экологических проблем.
Идея спирального построения курса. Ее выделение обусловлено необходимостью учета математической подготовки и познавательных возможностей учащихся.
В соответствии с целями обучения физике учащихся основной школы и сформулированными выше идеями, положенными в основу курса физики, он имеет следующее содержание и структуру.
Курс начинается с введения, имеющего методологический характер. В нем дается представление о том, что изучает физика (физические явления, происходящие в микро-, макро- и мегамире), рассматриваются теоретический и экспериментальный методы изучения физических явлений, структура физического знания (понятия, законы, теории). Усвоение материала этой темы обеспечено предшествующей подготовкой учащихся по математике и природоведению.
Затем изучаются явления макромира, объяснение которых не требует привлечения знаний о строении вещества (темы «Движение и взаимодействие», «Звуковые явления», «Световые явления»). Тема «Первоначальные сведения о строении вещества» предшествует изучению явлений, которые объясняются на основе знаний о строении вещества. В ней рассматриваются основные положения молекуляр-но-кинетической теории, которые затем используются при объяснении тепловых явлений, механических и тепловых свойств газов, жидкостей и твердых тел.
Изучение электрических явлений основывается на знаниях о строении атома, которые применяются далее для объяснения электростатических и электромагнитных явлений, электрического тока и проводимости различных сред.
Таким образом, в VII—VIII классах учащиеся знакомятся с наиболее распространенными и доступными для их понимания физическими явлениями (механическими, тепловыми, электрическими, магнитными, звуковыми, световыми), свойствами тел и учатся объяснять их.
В IX классе изучаются более сложные физические явления и более сложные законы. Так, в IX классе учащиеся вновь возвращаются к изучению вопросов механики, но на данном этапе механика представлена как целостная фундаментальная физическая теория; предусмотрено изучение всех структурных элементов этой теории, включая законы Ньютона и законы сохранения. Обсуждаются границы применимости классической механики, ее объяснительные и предсказательные функции. Затем следует тема «Механические колебания и волны», позволяющая показать применение законов механики к анализу колебательных и волновых процессов и создающая базу для изучения электромагнитных колебаний и волн.
За темой «Электромагнитные колебания и электромагнитные волны» следует тема «Элементы квантовой физики», содержание которой направлено на формирование у учащихся некоторых квантовых представлений, в частности, представлений о дуализме и квантовании как неотъемлемых свойствах микромира, знаний об особенностях строения атома и атомного ядра.
Завершается курс темой «Вселенная», позволяющей сформировать у учащихся систему астрономических знаний и показать действие физических законов в мегамире.
Курс физики носит экспериментальный характер, поэтому большое внимание в нем уделено демонстрационному эксперименту и практическим работам учащихся, которые могут выполняться как в классе, так и дома.
Как уже указывалось, в курсе реализована идея уровневой дифференциации. К теоретическому материалу второго уровня, помимо обязательного, т. е. материала первого уровня, отнесены некоторые вопросы истории физики, материал, изучение которого требует хорошей математической подготовки и развитого абстрактного мышления, прикладной материал. Перечень практических работ также включает работы, обязательные для всех, и работы, выполняемые учащимися, изучающими курс на повышенном уровне. В тексте программы выделены первый и второй уровни, при этом предполагается, что второй уровень включает материал первого уровня и дополнительные вопросы.
Место предмета в учебном плане
Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 210 часов для обязательного изучения физики на базовом уровне ступени основного общего образования, в том числе в 7, 8 и 9 классах по 68 учебных часов из расчета 2 учебных часа в неделю.
Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познания, коммуникация, профессионально-трудовой выбор, личностное саморазвитие, ценностные ориентации, поиск смыслов жизнедеятельности. С этих позиций обучение рассматривается как процесс овладения не только определенной суммой знаний и системой соответствующих умений и навыков, но и как процесс овладения компетенциями.
Цель обучения физике - построение логически последовательного курса изучения физики, создающего целостное непротиворечивое представление об окружающем мире на основе современных научных знаний.
На основании требований Государственного образовательного стандарта в содержании рабочей программы предполагается реализовать актуальные в настоящее время компетентностный, личностно-ориентированный, деятельностный подходы, которые определяют задачи обучения:
Приобретение знаний о строении вещества и основных механических явлениях, физических величинах, характеризующих эти явления, основных законах, их применении в технике и повседневной жизни, методах научного познания природы;
Овладение способами деятельности по применению полученных знаний для объяснения физических явлений и процессов, принципов действия технических устройств; решения задач, а также по применению естественнонаучных методов познания, в том числе в экспериментальной деятельности;
Освоение ключевых, общепредметных и предметных компетенций: коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной, смыслопоисковой.
Компетентностный подход определяет следующие особенности предъявления содержания образования: оно представлено в виде трех тематических блоков, обеспечивающих формирование компетенций. В первом блоке представлены дидактические единицы, которые содержат основную теоретическую базу физической науки. Во втором — дидактические единицы, обеспечивающие совершенствование навыков практической и исследовательской деятельности, решения задач. Это содержание обучения является базой для развития учебно-познавательной, рефлексивной компетенции, компетенции личностного саморазвития учащихся. В третьем блоке представлены дидактические единицы, отражающие свободное использование полученных знаний в социальных ситуациях и обеспечивающие развитие коммуникативной, рефлексивной, ценностно-ориентационной и смыслопоисковой компетенции.
Таким образом, рабочая программа обеспечивает взаимосвязанное развитие и совершенствование ключевых, общепредметных и предметных компетенций.
Принципы отбора содержания связаны с преемственностью целей образования на различных ступенях и уровнях обучения, логикой внутрипредметных связей, а также с возрастными особенностями развития учащихся.
Личностная ориентация образовательного процесса выявляет приоритет воспитательных и развивающих целей обучения. Способность учащихся понимать причины и логику развития физических процессов открывает возможность для осмысленного восприятия общей физической картины мира. Система учебных занятий призвана способствовать развитию личностной самоидентификации, гуманитарной культуры школьников, их приобщению к ценностям национальной и мировой науки и культуры, усилению мотивации к социальному познанию и творчеству, воспитанию личностно и общественно востребованных качеств, в том числе гражданственности, толерантности.
Деятельностный подход отражает стратегию современной образовательной политики: необходимость воспитания человека и гражданина, интегрированного в современное ему общество, нацеленного на совершенствование этого общества. Система уроков сориентирована не столько на передачу «готовых знаний», сколько на формирование активной личности, мотивированной к самообразованию, обладающей достаточными навыками и психологическими установками к самостоятельному поиску, отбору, анализу и использованию информации.
Приоритетной целью обучения физики в этих классах является построение логически последовательного и достаточно простого курса физики, создающего целостное непротиворечивое представление об окружающем мире на основе современных научных знаний.
Основой целеполагания является обновление требований к уровню подготовки выпускников в системе гуманитарногообразования, отражающее важнейшую особенность педагогической концепции государственного стандарта— переход от суммы «предметных результатов» (то есть образовательных результатов, достигаемых в рамках отдельных учебных предметов) к межпредметным и интегративным результатам.
Такие результаты представляют собой обобщенные способы деятельности, которые отражают специфику не отдельных предметов, а ступеней общего образования. В государственном стандарте они зафиксированы как общие учебные умения, навыки и способы человеческой деятельности, что предполагает повышенное внимание к развитию межпредметных связей курса физики.
На ступени основной школы задачи учебных занятий (в схеме —планируемый результат) определены как закрепление умений разделять процессы на этапы, звенья, выделять характерные причинно-следственные связи, определять структуру объекта познания, значимые функциональные связи и отношения между частями целого, сравнивать, сопоставлять, классифицировать, ранжировать объекты по одному или нескольким предложенным основаниям, критериям. Принципиальное значение в рамках курса приобретает умение различать факты, мнения, доказательства, гипотезы.
При выполнении творческих работ формируется умение определять адекватные способы решения учебной задачи на основе заданных алгоритмов, комбинировать известные алгоритмы деятельности в ситуациях, не предполагающих стандартного применения одного из них, мотивированно отказываться от образца деятельности, искать оригинальные решения.
Большую значимость на этой ступени образования сохраняет информационно-коммуникативная деятельность учащихся, в рамках которой развиваются умения и навыки поиска нужной информации по заданной теме в источниках различного типа, извлечения необходимой информации из источников, созданных в различных знаковых системах (текст, таблица, график, диаграмма и др.), перевода информации из одной знаковой системы в другую (из текста в таблицу и др.), отделения основной информации от второстепенной, критического оценивания достоверности полученной информации, передачи содержания информации адекватно поставленной цели (сжато, полно, выборочно).
С точки зрения развития умений и навыков рефлексивной деятельности, особое внимание уделено способности учащихся самостоятельно организовывать свою учебную деятельность (постановка цели, планирование, определение оптимального соотношения цели и средств и др.), оценивать ее результаты, определять причины возникших трудностей и пути их устранения, осознавать сферы своих интересов и соотносить их со своими учебными достижениями, чертами своей личности.
Учебное планирование
9 класс
№ |
Наименование раздела/темы |
Всего часов |
Из них Лаб.работ |
Из них Контрольных работ |
1 |
Входная диагностика |
1 |
||
1. Механическое движение |
12 |
2 |
1 |
|
2 |
Механическое движение. Система отсчета. |
1 |
||
3 |
Скорость и путь. |
1 |
||
4 |
Решение задач. |
1 |
||
5 |
Лабораторная работа № 1 Изучение прямолинейного равномерного движения. |
1 |
||
6 |
Прямолинейное равноускоренное движение. |
1 |
||
7 |
Путь при равноускоренном движении. |
1 |
||
8 |
Решение задач. |
1 |
||
9 |
Лабораторная работа № 2 Изучение прямолинейного равноускоренного движения. |
1 |
||
10 |
Равномерное движение по окружности. |
1 |
||
11 |
Решение задач. |
1 |
||
12 |
Решение задач. |
1 |
||
13 |
Контрольная работа № 1 за 1 четверть. |
1 |
||
2. Законы движения и силы |
15 |
4 |
1 |
|
14 |
Закон инерции – первый закон Ньютона. |
1 |
||
15 |
Взаимодействия и силы. |
1 |
||
16 |
Второй закон Ньютона. |
1 |
||
17 |
Третий закон Ньютона. |
1 |
||
18 |
Решение задач. |
1 |
||
19 |
Лабораторная работа № 3 Исследование зависимости силы тяжести от массы. |
1 |
||
20 |
Лабораторная работа № 4 Сложение сил, направленных вдоль одной прямой и под углом. |
1 |
||
21 |
Лабораторная работа № 5 Исследование зависимости силы упругости от удлинения пружины. Измерение жесткости пружины. |
1 |
||
22 |
Закон всемирного тяготения. |
1 |
||
23 |
Решение задач. |
1 |
||
24 |
Решение задач. |
1 |
||
25 |
Решение задач. |
1 |
||
26 |
Контрольная работа № 2 за 2 четверть. |
1 |
||
27 |
Сила трения. |
1 |
||
28 |
Лабораторная работа № 6 Исследование силы трения скольжения. Измерение коэффициента трения скольжения. |
1 |
№ |
Наименование раздела/темы |
Всего часов |
Из них Лаб.работ |
Из них Контрольных работ |
3. Законы сохранения в механике |
9 |
1 |
- |
|
29 |
Импульс. Закон сохранения импульса. |
1 |
||
30 |
Реактивное движение. Неупругое столкновение движущихся тел. |
1 |
||
31 |
Решение задач |
1 |
||
32 |
Механическая работа. Мощность. |
1 |
||
33 |
Энергия. |
1 |
||
34 |
Закон сохранения механической энергии. |
1 |
||
35 |
Решение задач. |
1 |
||
36 |
Лабораторная работа № 7 Измерение мощности человека. |
1 |
||
37 |
Решение задач. |
1 |
||
4. Механические колебания и волны |
11 |
2 |
1 |
|
38 |
Механические колебания. |
1 |
||
39 |
Превращение энергии при колебаниях. Периоды колебаний различных маятников. |
1 |
||
40 |
Решение задач. |
1 |
||
41 |
Лабораторная работа № 8 Изучение колебаний нитяного маятника и измерение ускорения свободного падения. |
1 |
||
42 |
Лабораторная работа № 9 Изучение колебаний пружинного маятника. |
1 |
||
43 |
Механические волны. |
1 |
||
44 |
Звук. |
1 |
||
45 |
Решение задач. |
1 |
||
46 |
Решение задач. |
1 |
||
47 |
Решение задач. |
1 |
||
48 |
Контрольная работа № 3 за 3 четверть. |
1 |
||
5. Атом и атомное ядро |
8 |
1 |
- |
|
49 |
Строение атома. |
1 |
||
50 |
Излучение и поглощение света атомами. |
1 |
||
51 |
Лабораторная работа № 10 Наблюдение линейчатых спектров излучения. |
1 |
||
52 |
Атомное ядро. |
1 |
||
53 |
Радиоактивность. |
1 |
||
54 |
Ядерные реакции. |
1 |
||
55 |
Ядерная энергетика. |
1 |
||
56 |
Решение задач. |
1 |
||
6. Строение и эволюция Вселенной |
12 |
- |
1 |
|
57 |
Солнечная система. |
1 |
||
58 |
Звезды. |
1 |
||
59 |
Галактики. Эволюция Вселенной. |
1 |
||
60 |
Решение задач. |
1 |
||
61 |
Решение задач. |
1 |
||
№ |
Наименование раздела/темы |
Всего часов |
Из них Лаб.работ |
Из них Контрольных работ |
62 |
Решение задач. |
1 |
||
63 |
Контрольная работа № 4 годовая |
1 |
||
64 |
Подготовка к итоговому оцениванию знаний. ГИА. |
1 |
||
65 |
Подготовка к итоговому оцениванию знаний. ГИА. |
1 |
||
66 |
Подготовка к итоговому оцениванию знаний. ГИА. |
1 |
||
67 |
Подготовка к итоговому оцениванию знаний. ГИА. |
1 |
||
68 |
Подготовка к итоговому оцениванию знаний. ГИА. |
1 |
||
Всего: |
68 |
10 |
4 |
Графики проведения лабораторных работ по физике
9 классы
№ Лабораторной работы |
Дата проведения |
|
9 А |
9 Б |
|
№ 1 Изучение прямолинейного равномерного движения. |
||
№ 2 Изучение прямолинейного равноускоренного движения. |
||
№ 3Исследование зависимости силы тяжести от массы. |
||
№ 4 Сложение сил, направленных вдоль одной прямой и под углом. |
||
№ 5 Исследование зависимости силы упругости от удлинения пружины. Измерение жесткости пружины. |
||
№ 6 Исследование силы трения скольжения. Измерение коэффициента трения скольжения. |
||
№ 7 Измерение мощности человека. |
||
№ 8 Изучение колебаний нитяного маятника и измерение ускорения свободного падения. |
||
№ 9 Изучение колебаний пружинного маятника. |
||
№ 10 Наблюдение линейчатых спектров излучения. |
Графики проведения контрольных работ по физике
9 классы
№ Контрольной работы |
Дата проведения |
|
9 А |
9 Б |
|
Входная диагностика |
||
Контрольная работа № 1 за 1 четверть |
||
Контрольная работа № 2 за 2 четверть |
||
Контрольная работа № 3 за 3 четверть |
||
Контрольная работа № 4 годовая |