Сборник самостоятельных работ по геометрии на тему «Тела вращения» (11 класс)

10
0
Материал опубликован 18 August 2017 в группе

ГБПОУ города Москвы «Спортивно-педагогический колледж» Департамента спорта и туризма города Москвы; преподаватель математики, информатики и ИКТ: Макеева Елена Сергеевна

                                    Самостоятельная работа № 1 «Цилиндр»

Вариант 1

Прямоугольник со сторонами, равными 3*а и 2*а, вращается сначала вокруг одной стороны, затем – вокруг другой. Вычислите отношение площадей полных поверхностей и площадей боковых поверхностей полученных тел вращения.

Через образующую цилиндра проведены две взаимно перпендикулярные плоскости. Площади полученных сечений S1 и S2. Найдите площадь осевого сечения цилиндра.

Плоскость α пересекает основания цилиндра по хордам, дины которых равны 16 см и 12 см. Вычислите тангенс угла наклона плоскости α к плоскостям оснований цилиндра, если радиус оснований цилиндра 10 и высота 30 см.

Вариант 2

Прямоугольник со сторонами, равными 4*а и 3*а, вращается сначала вокруг одной стороны, затем – вокруг другой. Вычислите отношение площадей полных поверхностей и площадей боковых поверхностей полученных тел вращения.

Через образующую цилиндра проведены две взаимно перпендикулярные плоскости. Площадь одного из полученных сечений So, площадь осевого сечения цилиндра S. Найдите площадь другого полученного сечения.

Плоскость α пересекает основания цилиндра по хордам, дины которых равны 24 см и 32 см. Вычислите тангенс угла наклона плоскости α к плоскостям оснований цилиндра, если радиус оснований цилиндра 20 и высота 50 см.

 

Самостоятельная работа № 2 «Конус»

Вариант 1


Угол при вершине осевого сечения конуса равен 2α, радиус основания конуса равен R.ь Найдите площадь полной поверхности конуса.

Высота конуса равна h, радиус основания R. Через вершину конуса проведена плоскость, отсекающая от окружности основания дугу в 60o . Вычислите площадь сечения.

Найдите площадь осевого сечения усеченного конуса, если его высота h, образующая L и площадь боковой поверхности S.


                                                                  Вариант 2


Угол между образующей конуса и его основанием равен α, радиус основания конуса R. Найдите площадь полной поверхности конуса.

Высота конуса равна h, радиус основания R. Через вершину конуса проведена плоскость, отсекающая от окружности основания дугу в 90o . Вычислите площадь сечения.

Найдите площадь боковой поверхности усеченного конуса, если его высота h, образующая L и площадь осевого сечения S.


                                           Самостоятельная работа № 3 «Сфера»


Вариант 1

Сфера радиуса 6 см касается плоскости треугольника ABC в центре описанной около него окружности. Найдите расстояние от центра сферы до вершин треугольника, если AB=3 см, AC=4 см, BC=5 см.

Определите расстояние между центрами сфер, которые заданы уравнениями x2 + y2 + z2 -2x+6y-4z=5 и x2 +y2+z2+4x+2y+6z=7

Сфера проходит через три вершины ромба со стороной, равной 6 см, и углом 60o . Найдите расстояние от центра сферы до четвертой вершины ромба, если радиус сферы равен 10 см.

Вариант 2

Сфера радиуса 1,5 см касается плоскости треугольника ABC в центре вписанной в него окружности. Найдите расстояние от центра сферы до сторон треугольника, если AB=6 см, AC=8 см, BC=10 см.

Определите расстояние между центрами сфер, которые заданы уравнениями x2 + y2 + z2 +6x-2y-4z=5 и x2 +y2+z2-2x-6y+4z=11

Сфера проходит через три вершины ромба со стороной, равной 8 см, и углом 60o . Найдите расстояние от центра сферы до четвертой вершины ромба, если радиус сферы равен 10 см.

 

Самостоятельная работа № 4 «Объемы прямоугольного параллелепипеда, прямой призмы и цилиндра»

 

Вариант 1

Найдите объем прямоугольного параллелепипеда, если площади трех его граней равна 6 см2 , 18 см2 и 12 см2 .

В основании прямой призмы лежит ромб с острым углом α. Меньшая диагональ призмы равна d и составляет с плоскостью основания угол . Вычислите объем призмы.

Центры O1 и O2 оснований цилиндра имеют координаты (0;1;1) и (4;1;1). Одна из точек окружности основания с центром O2 имеет координаты (4;3;-2). Найдите объем цилиндра.

 

Вариант 2


Найдите объем прямоугольного параллелепипеда, если площади трех его граней равна 15 см2 , 45 см2 и 75 см2 .

В основании прямой призмы лежит ромб с острым углом α. Большая диагональ призмы равна d и составляет с плоскостью основания угол . Вычислите объем призмы.

Центры O1 и O2 оснований цилиндра имеют координаты (2;3;3) и (-2;3;3). Одна из точек окружности основания с центром O1 имеет координаты (2;5;-1). Найдите объем цилиндра.


 

Самостоятельная работа № 5 «Объемы наклонной призмы, пирамиды и конуса»

Вариант 1

В наклонной призме боковое ребро равно L, площадь основания S. Угол между плоскостями основания и перпендикулярного боковому ребру сечения равен . Найдите объем призмы.

Стороны оснований правильной усеченной треугольной пирамиды равны a и b (b>a). Боковое ребро наклонено к плоскости основания под углом α. Вычислите объем пирамиды.

Найдите объем и площадь поверхности тела, полученного при вращении треугольника со сторонами 6 см, 25 см и 29 см вокруг прямой, проходящей через вершину меньшего угла треугольника параллельно меньшей его стороне.


 

Вариант 2


 

В наклонной призме боковое ребро равно L. Угол между плоскостями основания и перпендикулярного боковому ребру сечения равен . Объем призмы равен V. Найдите площадь основания.

Стороны оснований правильной усеченной треугольной пирамиды равны a и b (b>a). Боковая грань наклонена к плоскости основания под углом α. Вычислите объем пирамиды.

Найдите объем и площадь поверхности тела, полученного при вращении треугольника со сторонами 13 см, 14 см и 15 см вокруг прямой, проходящей через вершину среднего по величине угла треугольника параллельно средней его стороне.


 

Самостоятельная работа № 6 «Объем шара и площадь сферы»

Вариант 1


 

Сфера и два ее взаимно перпендикулярных сечения имеют единственную общую точку. Площади сечений равны 11 π см2 и 14 π см2 . Найдите объем шара и площадь сферы.

Плоскость, перпендикулярная радиусу шара, делит его на части в отношении 2:1, считая от цента шара. Площадь сечения шара этой плоскостью равна 20π см2 . Вычислите объем меньшего шарового сегмента.

Круговой сектор с углом наклона α и хордой aвращается вокруг одного из ограничивающих его радиусов. Найдите объем получившегося шарового сектора.

Вариант 2

Сфера и два ее взаимно перпендикулярных сечения имеют единственную общую точку. Площади сечений равны 13 π см2 и 23 π см2 . Найдите объем шара и площадь сферы.

Плоскость, перпендикулярная радиусу шара, делит его на части в отношении 3:1, считая от цента шара. Площадь сечения шара этой плоскостью равна 63 π см2 . Вычислите объем меньшего шарового сегмента.

Круговой сектор с углом наклона α и радиусом R вращается вокруг одного из ограничивающих его радиусов. Найдите объем получившегося шарового сектора.


 

Самостоятельная работа № 7 «Комбинации круглых тел»

Вариант 1

В цилиндр вписан шар радиуса R. Найдите объем и площадь полной поверхности цилиндра.

Вокруг конуса с образующей L и радиусом основания R описана сфера. Определите радиус сферы.

В конус вписан цилиндр, у которого диагонали осевого сечения соответственно параллельны двум образующим конуса. Образующая конуса равна L и составляет с плоскостью основания угол α. Найдите объем цилиндра и площадь его боковой поверхности.

Вариант 2

В цилиндр высотой h вписан шар. Найдите объем и площадь полной поверхности цилиндра.

Вокруг конуса с высотой h и радиусом основания R описана сфера. Определите радиус сферы.

В конус вписан цилиндр, у которого диагонали осевого сечения соответственно параллельны двум образующим конуса. Образующая конуса составляет с плоскостью основания угол α, радиус основания конуса равен R. Найдите объем цилиндра и площадь его боковой поверхности.


 

Самостоятельная работа № 8 «Комбинации многогранников и круглых тел»

Вариант 1


 

Образующая конуса равна L и составляет угол α c плоскостью основания. В конус вписана правильная треугольная пирамида. Найдите объем пирамиды.

Длина стороны основания правильной четырехугольной пирамиды равна a, боковая грань составляет с плоскостью основания угол α. Определите радиус описанной сферы.

В основании прямой призмы лежит прямоугольный треугольник с катетами 2 см и 4 см. Диагональ большей боковой грани образует с основанием угол в 30o . В призму вписан цилиндр. Найдите объем цилиндра.

Вариант 2

Высота конуса равна h. Образующая конуса составляет угол α с плоскостью основания. В конус вписана правильная треугольная пирамида. Найдите объем пирамиды.

Боковое ребро правильной четырехугольной пирамиды равно b, боковая грань составляет с плоскостью основания угол α. Определите радиус описанной сферы.

В основании прямой призмы лежит прямоугольный треугольник с катетами 4 см и 6 см. Диагональ большей боковой грани образует с основанием угол в 60o. В призму вписан цилиндр. Найдите объем цилиндра.


 

ОТВЕТЫ К САМОСТОЯТЕЛЬНЫМ РАБОТАМ

п/п

Вариант

Задание 1

Задание 2

Задание 3

1

1

3:2 и 1:1

15 или

2

4:3 и 1:1

12,5 или

2

1

2

3

1

6,5 см

8 см или 2 см

2

2,5 см

6

6 см или 2 см

4

1

36 см3

sin2

52π

2

225 см3

sin2

80

5

1

SLcos

(b3 – a3)tg

1600 см3 и 1320 см2

2

(b3 – a3)tg

1344 см3 и 672 см2

6

1

см3 и 100 см2

см3

sin

2

288π см3 и 144π см2

99 см3

7

1

2 и 6

и

2

и

и

8

1

sin2

(7 - 15см3

2

bctg

4(19-65) см3


 


 


 


 


 

в формате Microsoft Word (.doc / .docx)
Комментарии
Комментариев пока нет.