ГБПОУ НО «Нижегородский медицинский колледж»
Теория вероятностей и комбинаторные правила решения задач
Белова Лариса Григорьевна
Преподаватель
<номер>
Эпиграф урока:
.
.
«Число, место и комбинация – три взаимно перекрещивающиеся, но отличные сферы мышления, к которым можно отнести все математические идеи».
Дж. Сильвестр
<номер>
Классическое определение вероятности
Стохастическим называют опыт, если заранее нельзя предугадать его результаты. Результаты (исходы) такого опыта называются событиями.
Пример: выбрасывается игральный кубик (опыт);
выпадает двойка (событие).
Событие, которое обязательно произойдет в результате испытания, называется достоверным, а которое не может произойти, - невозможным.
Пример: В мешке лежат три картофелины.
Опыт – изъятие овоща из мешка.
Достоверное событие – изъятие картофелины.
Невозможное событие – изъятие кабачка.
<номер>
Классическое определение вероятности
Равновозможными называют события, если в результате опыта ни одно из них не имеет большую возможность появления, чем другие.
Примеры: 1) Опыт - выбрасывается монета.
Выпадение орла и выпадение решки –
равновозможные события.
2) В урне лежат три шара. Два белых и синий.
Опыт – извлечение шара.
События – извлекли синий шар и извлекли
белый шар - неравновозможны.
Появление белого шара имеет больше шансов..
<номер>
Классическое определение вероятности
Несовместимыми (несовместными) называют события, если наступление одного из них исключает наступление других.
Пример: 1) В результате одного выбрасывания выпадает
орел (событие А) или решка (событие В).
События А и В - несовместны.
2) В результате двух выбрасываний выпадает
орел (событие А) или решка (событие В).
События А и В - совместны. Выпадение орла в первый раз
не исключает выпадение решки во второй
<номер>
Классическое определение вероятности
Полной группой событий называется множество всех событий рассматриваемого опыта, одно из которых обязательно произойдет, а любые два других несовместны.
Пример: 1) Опыт – один раз выбрасывается монета.
Элементарные события: выпадение орла
и выпадение решки образуют полную группу.
События образующие полную группу называют элементарными.
<номер>
Вероятностью случайного события А называется отношение числа элементарных событий, которые благоприятствуют этому событию, к общему числу всех элементарных событий, входящих в данную группу .
P(A) = m/n
Классическое определение вероятности
*
<номер>
Общая схема решения вероятностных задач (единичные испытания)
Определить, в чем состоит случайный эксперимент.
Определить, какие в эксперименте элементарные события.
Убедиться, что события равновероятны.
Найти общее число элементарных исходов (n).
Определить, какие элементарные события благоприятствуют событию А, найти их количество (m).
Найти вероятность события А по формуле P(A)=m/n
Приложение 1
<номер>
Для конечных множеств событий при нахождении m и n широко используют правила комбинаторики.
Задача №1: Сколько двузначных чисел можно
составить используя цифры 7; 8; 9
(цифры могут повторяться)?
В данном случае легко перебрать все комбинации.
77
78
79
88
87
89
99
97
98
9 вариантов
<номер>
Задача №2: Сколько пятизначных можно
составить используя цифры 7; 8; 9
(цифры могут повторяться)?
Как видим, в этой задаче перебор довольно затруднителен.
Решим задачу иначе.
На первом месте может стоять
любая из трех цифр – 3 варианта.
На втором месте может стоять
любая из трех цифр – 3 варианта.
На третьем месте может стоять
любая из трех цифр – 3 варианта.
На четвертом месте может стоять
любая из трех цифр – 3 варианта.
На пятом месте может стоять
любая из трех цифр – 3 варианта.
Комбинаторное правило умножения
<номер>
Задачи открытого банка
<номер>
Задача 1.Ученика попросили назвать число от 1 до 100. Какова вероятность того, что он назовёт число 56?
Число возможных исходов - 100 (сто чисел). Верно названное число одно. Это 56, значит благоприятный исход один. Вероятность того, что он назовёт число 56 будет один к ста или 0,01.
Ответ: 0,01
<номер>
Задача 8. В фирме такси в данный момент свободно 10 машин: 5 чёрных, 1 жёлтая и 4 зелёных. На вызов выехала одна из машин, случайно оказавшаяся ближе всего к заказчику. Найдите вероятность того, что к нему приедет жёлтое такси.
Возможное число исходов - 10. Число благоприятных исходов - 1 (жёлтая машина одна). Искомая вероятность равна 1 к 10 или 0,1.
Ответ: 0,1
Задача 11. В чемпионате по гимнастике участвуют 50 спортсменок: 24 из США, 13 из Мексики, остальные — из Канады. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Канады.
*
<номер>
Благоприятное событие А: первой выступает
спортсменка из Канады
К-во благоприятных
событий: m=?
К-во всех событий группы: n=?
Соответствует
количеству
гимнасток
из Канады.
m=50-(24+13)=13
Соответствует количеству всех гимнасток.
n=50
Задача 12. Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений — по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса?
<номер>
Выясним, как распределятся выступления по дням:
1 день – 8 выступлений, остальные поровну, значит по 18 выступлений в день.
2 день - 18 выступлений,
3 день – 18 выступлений,
4 день – 18 выступлений,
5 день – 18 выступлений
Вероятность, что выступление представителя России состоится в третий день конкурса, равна 18 к 80 или 18/80=0,225.
Ответ: 0,225
Задача 13. Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России?
<номер>
В данном случае нужно поставить себя на место Руслана Орлова.
Он будет играть кем-то из 25 спортсменов (на чемпионат приехали Руслан и ещё 25 спортсменов), значит возможных исходов 25. Из них осталось 9 спортсменов из России. Это и есть число благоприятных исходов. Вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России 9 к 25 или 0,36.
Вероятность и правило произведения.
Решение:
Всего 6 монет. Возможны варианты перекладывания:
1 карман 2 карман
5 1 1 5 1 1
1 1 5 1 1 5
1 5 1 1 5 1
Р = ( 2/6 * 4/5 * 3/4 ) * 3 =3/5 = 0,6
«5» «1» «1»
Задача 16. В кармане у Пети было 4 монеты по рублю и 2 монеты по 5 рублей.
Петя, не глядя, переложил какие-то три монеты в другой карман.
Найдите вероятность того, что пятирублевые монеты лежат в
разных карманах.
<номер>
Задача 19. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.
*
<номер>
Опыт: бросают три игральные кости.
Благоприятное событие А: в сумме выпало 7 очков.
К-во благоприятных
событий m=?
331
313
133
223
232
322
511
151
115
412
421
124
142
214
241
К-во всех событий группы n=?
1-я кость - 6 вариантов
2-я кость - 6 вариантов
3-я кость - 6 вариантов
Задача 23. Монету бросают трижды. Найдите вероятность того, первые два броска окончатся одинаково.
1-й бросок
2-ой бросок
3-ий бросок
1
орёл
орёл
орёл
2
орёл
орёл
решка
3
орёл
решка
решка
4
орёл
решка
орёл
5
решка
решка
решка
6
решка
решка
орёл
7
решка
орёл
орёл
8
решка
орёл
решка
<номер>
Найдём число возможных исходов, переберём все варианты бросков. В подобных задачах составляйте таблицу, так считать удобнее
Первые два броска одинаково могут окончиться в четырёх случаях это 1,2,5,6 варианты, то есть благоприятных исходов 4. Искомая вероятность равна 4/8=0,5.
<номер>
Задача 24. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу.
В данной задаче составляется та же таблица, что и предыдущей. Орёл не выпадет ни разу только в одном варианте из восьми (пятый вариант). Искомая вероятность равна 1 к 8 или 0,125.
Ответ: 0,125
Задача 25. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что сумма выпавших очков равна 7.
Всего исходов – 36
Благоприятных исходов – 6
Р=6/36=1/6
<номер>
1
2
3
4
5
6
1
2
3
4
5
6
7
2
3
4
5
6
7
8
3
4
5
6
7
8
9
4
5
6
7
8
9
10
5
6
7
8
9
10
11
6
7
8
9
10
11
12