12+  Свидетельство СМИ ЭЛ № ФС 77 - 70917
Лицензия на образовательную деятельность №0001058
Пользовательское соглашение     Контактная и правовая информация
 
Педагогическое сообщество
УРОК.РФУРОК
 
Материал опубликовал
БОРИС НИКОЛАЕВИЧ6236
Заслуженный Учитель России с 2007 года. Педагогический стаж - 35 лет. В настоящее время с огромным удовольствием работаю в ЧОУ Санкт-Петербургская Школа Тет-а-Тет.
Россия, Санкт-Петербург
Материал размещён в группе «Математики, объединяйтесь!!!»

ПЕРВУШКИН БОРИС НИКОЛАЕВИЧ

ЧОУ «Санкт-Петербургская Школа «Тет-а-Тет»

Учитель Математики Высшей категории

 Тема урока: “Построение сечений многогранников”.

Цель урока: ознакомление с методами построений сечений многогранников.

Этапы урока:

Актуализация опорных знаний.

Постановка задачи.

Изучение нового материала:

А) Определение сечения.

Б) Методы построений сечений:

а) метод следов;

б) метод вспомогательных сечений;

в) комбинированный метод.

Закрепление материала.

Примеры построений сечений методом следов.

Подведение итогов урока.

Тест.

Ход урока.

Актуализация опорных знаний.

Вспомним:
- пересечение прямой с плоскостью;
- пересечение плоскостей;
- свойства параллельных плоскостей.

Постановка задачи.

Вопросы к классу:
- Что значит построить сечение многогранника плоскостью?
- Как могут располагаться относительно друг друга многогранник и плоскость?
- Как задается плоскость?
- Когда задача на построение сечения многогранника плоскостью считается решенной?

Изучение нового материала.

А) Итак, задача состоит в построении пересечения двух фигур: многогранника и плоскости ( рис.1). Это могут быть: пустая фигура (а), точка (б), отрезок (в), многоугольник (г). Если пересечение многогранника и плоскости есть многоугольник, то этот многоугольник называется сечением многогранника плоскостью.

Рис. 1

Будем рассматривать только случай, когда плоскость пересекает многогранник по его внутренности. При этом пересечением данной плоскости с каждой гранью многогранника будет некоторый отрезок. Таким образом, задача считается решенной, если найдены все отрезки, по которым плоскость пересекает грани многогранника.

Исследуйте сечения куба (рис.2) и ответьте на следующие вопросы:

Рис. 2

- какие многоугольники получаются в сечении куба плоскостью? (Важно число сторон многоугольника);

[ Предполагаемые ответы: треугольник, четырехугольник, пятиугольник, шестиугольник.]

- может ли в сечении куба плоскостью получиться семиугольник? А восьмиугольник и т.д.? Почему?

Давайте рассмотрим призму и ее возможные сечения плоскостью ( на модели). Какие многоугольники получаются?

Какой можно сделать вывод? Чему равно наибольшее число сторон многоугольника, полученного сечением многогранника с плоскостью?

[ Наибольшее число сторон многоугольника, полученного в сечении многогранника плоскостью, равно числу граней многогранника.]

Б) а) Метод следов заключается в построении следов секущей плоскости на плоскость каждой грани многогранника. Построение сечения многогранника методом следов обычно начинают с построения так называемого основного следа секущей плоскости, т.е. следа секущей плоскости на плоскости основания многогранника.

б) Метод вспомогательных сечений построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь ввиду, что построения, выполняемые при использовании этого метода, зачастую получаются “скученными”. Тем не менее в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным.

Метод следов и метод вспомогательных сечений являются разновидностями аксиоматического метода построения сечений многогранников плоскостью.

в) Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом.

А теперь на примере решения задач рассмотрим метод следов.

4. Закрепление материала.

Задача 1.

Построить сечение призмы ABCDA1B1C1D1 плоскостью, проходящей через точки P, Q, R (точки указаны на чертеже (рис.3)).

Решение.

Рис. 3

Построим след секущей плоскости на плоскость нижнего основания призмы. Рассмотрим грань АА1В1В. В этой грани лежат точки сечения P и Q. Проведем прямую PQ.

Продолжим прямую PQ, которая принадлежит сечению, до пересечения с прямой АВ. Получим точку S1, принадлежащую следу.

Аналогично получаем точку S2 пересечением прямых QR и BC.

Прямая S1S2 - след секущей плоскости на плоскость нижнего основания призмы.

Прямая S1S2 пересекает сторону AD в точке U, сторону CD в точке Т. Соединим точки P и U, так как они лежат в одной плоскости грани АА1D1D. Аналогично получаем TU и RT.

PQRTU – искомое сечение.

Задача 2.

Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки M, N, P (точки указаны на чертеже (рис.4)).

Решение.

Рис. 4

Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проодящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда.

Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения.

Так как точка M также принадлежит плоскости сечения и пересекает прямую АА1 в некоторой точке Х.

Точки X и N лежат в одной плоскости грани АА1D1D, соединим их и получим прямую XN.

Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A1B1C1D1, параллельную прямой NP. Эта прямая пересечет сторону В1С1 в точке Y.

Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение – MYZPNX.

Задача 3 ( для самостоятельного решения).

Построить сечение тетраэдра DACB плоскостью, проходящей через точки M, N, P (точки указаны на чертеже (рис.5)).

Рис. 5

5. Подведение итогов урока.

Ответьте на вопрос: являются ли закрашенные фигуры сечениями изображенных многогранников плоскостью PQR? И выполните правильное построение (рис. 6).

Вариант 1.

а)

б)

в)

г)

д)

Вариант 2.


 


 

Опубликовано в группе «Математики, объединяйтесь!!!»


Комментарии (0)

Чтобы написать комментарий необходимо авторизоваться.