Конспект занятия по теме «Строение атома и атомного ядра. Модели строения атома: планетарная модель и модель Бора»
Дисциплина: физика
Занятие №: 4.3
Тема: Строение атома и атомного ядра. Модели строения атома: планетарная модель и модель Бора
Цель: усвоение теоретических основ изучаемой темы (ядро, протон, нейтрон, нуклон, зарядовое и массовое число, модель Томсона, планетарная модель, модель Бора, опыты Резерфорда, постулаты Бора)
Обеспечение занятия: учебник, конспект лекции, задачник
Тип занятия: комбинированный урок
Технология обучения: интерактивное обучение
Методы обучения: лекция, работа с книгой
Компетенции:
ОК 1. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
ОК 2. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
ОК 3. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
ОК 4. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение своей квалификации.
ПК 1. Оформлять документы первичного учета.
Межпредметные связи: технология
Используемая литература: Жданов Л.С., Жданов Г.Л. Физика для средних специальных учебных заведений; Рымкевич А. П Сборник задач по физике для 8-10 классов
Содержание занятия
1. Организационный момент: 3-5 мин
(отметка отсутствующих, проверка внешнего вида учащихся, санитарного состояния кабинета)
2. Проверка знаний по пройденному материалу: 10-15 мин
Фронтальный опрос.
Контрольные вопросы:
1. Почему явление радиоактивности служит одним из доказательств сложности атома?
2. Возможны ли превращения одних химических элементов в другие?
3. Почему выяснить природу α-лучей оказалось гораздо сложнее, чем в случае β-лучей?
4. Какие из известных законов сохранения выполняются при радиоактивном распаде?
5. Что такое изотопы? Почему изотопы одного химического элемента обладают одинаковыми химическими свойствами?
6. Чем отличаются ядра атомов разных изотопов одного химического элемента?
7. Что такое радиоактивные изотопы и как они используются?
3. Изложение материала: 45-50 мин
План:
1) Строение атома
2) Методы наблюдения и регистрации элементарных частиц
3) Модели строения атомов (Томсона, Резерфорда)
4) Постулаты Бора. Модель строения атома по Бору
Тезисы лекции
Благодаря новым методам регистрации радиоактивности стало возможным изучать новые явления, которые раньше не поддавались исследованию, и, в частности, попытаться ответить на вопрос, как устроено атомное ядро. Для ответа на этот вопрос Резерфорд решил использовать столкновение α-частиц с ядрами легких химических элементов.
Обстреливая α-частицами атомы водорода, Резерфорд обнаружил что нейтральные атомы водорода превращаются в положительно заряженные частицы. Резерфорду было известно, что легчайший атом Периодической системы водород состоит из ядра, имеющего единичный положительный заряд, и электрона. Следовательно, при столкновении с атомом водорода α-частица подходила достаточно близко к ядру водорода и передавала ему часть энергии и импульса. Резерфорд назвал эти положительно заряженные частицы H атомами. Позже за ними укрепилось название «протоны». Одновременно Резерфорд установил, что взаимодействие между α-частицей и ядром водорода не подчиняется обнаруженному им ранее закону рассеяния α частиц на ядрах золота. При сближении α-частицы с ядром водорода силы взаимодействия между α-частицей и ядром водорода резко возрастали.
Важнейшим этапом в развитии физики атомного ядра было открытие нейтрона в 1932 г.
Впервые в истории человечества искусственное превращение ядер осуществил Резерфорд в 1919 г. Первым ядром, подвергшимся искусственному преобразованию, было ядро атома азота . Бомбардируя азот -частицами большой энергии, испускаемыми радием, Резерфорд обнаружил появление протонов — ядер атома водорода.
В первых опытах регистрация протонов проводилась методом сцинтилляций, и их результаты не были достаточно убедительными и надежными. Но спустя несколько лет превращение азота удалось наблюдать в камере Вильсона. Примерно одна -частица на каждые 50 000 -частиц, испущенных радиоактивным препаратом в камере, захватывается ядром азота, что и приводит к испусканию протона. При этом ядро азота превращается в ядро изотопа кислорода:
В 1932 г. ученик Резерфорда - английский физиком Д. Чедвик открыл нейтрон.
При бомбардировке бериллия -частицами протоны не появлялись. Но обнаружилось какое-то сильно проникающее излучение, способное преодолеть такую преграду, как свинцовая пластина толщиной 10—20 см. Было сделано предположение, что это -лучи большой энергии.
Ирен Жолио-Кюри (дочь Марии и Пьера Кюри) и ее муж Фредерик Жолио-Кюри обнаружили, что если на пути излучения, образующегося при бомбардировке бериллия -частицами, поставить парафиновую пластину, то ионизирующая способность этого излучения резко увеличивается. Они справедливо предположили, что излучение выбивает из парафиновой пластины протоны, имеющиеся в большом количестве в таком водородсодержащем веществе.
Чедвик наблюдал в камере Вильсона треки ядер азота, испытавших столкновение с бериллиевым излучением. По его оценке, энергия -квантов, способных сообщать ядрам азота скорость, которая обнаруживалась в этих наблюдениях, должна была составлять 90 МэВ. Аналогичные лее наблюдения в камере Вильсона треков ядер аргона привезли к выводу, что энергия этих гипотетических -квантов должна составлять 150 МэВ. Таким образом, считая, что ядра приходят в движение в результате столкновения с безмассовыми частицами, исследователи пришли к явному противоречию: одни и те же -кванты обладали различной энергией.
Стало очевидным, что предположение об излучении бериллием -квантов, т. е. безмассовых частиц, несостоятельно. Из бериллия под действием -частиц вылетают какие-то достаточно тяжелые частицы. Ведь только при столкновении с тяжелыми частицами протоны или ядра азота и аргона могли получить ту большую энергию, которая наблюдалась на опыте. Поскольку эти частицы обладали большой проникающей способностью и непосредственно не ионизировали газ, то, следовательно, они были электрически нейтральными. Ведь заряженная частица сильно взаимодействует с веществом и поэтому быстро теряет свою энергию.
Новая частица была названа нейтроном. Существование ее предсказывал Резерфорд более чем за 10 лет до опытов Чедвика. По энергии и импульсу ядер, сталкивающихся с нейтронами, была определена масса этих новых частиц. Она оказалась чуть больше массы протона — 1838,6 электронной массы вместо 1836,1 для протона. Было установлено в итоге, что при попадании -частиц в ядра бериллия происходит следующая реакция:
Здесь — символ нейтрона; его заряд равен нулю, а относительная масса — примерно единице».
Нейтрон — нестабильная частица: свободный нейтрон за время около 15 мин распадается на протон, электрон и нейтрино — безмассовую нейтральную частицу. Нейтрон не имеет электрического заряда. Масса нейтрона больше массы протона примерно на 2,5 электронной массы.
Сразу же после того, как в опытах Чедвика был открыт нейтрон, советский физик Д. Д. Иваненко и немецкий ученый В. Гейзенберг в 1932 г. предложили протонно-нейтронную модель ядра. Она была подтверждена последующими исследованиями ядерных превращений и в настоящее время является общепризнанной.
Протонно-нейтронная модель ядра. Согласно протонно-нейтронной модели ядра состоят из элементарных частиц двух видов — протонов и нейтронов.
Так как в целом атом электрически нейтрален, а заряд протона равен модулю заряда электрона, то число протонов в ядре равно числу электронов в атомной оболочке. Следовательно, число протонов в ядре равно атомному номеру элемента Z в периодической системе элементов Д. И. Менделеева.
Сумму числа протонов Z и числа нейтронов N в ядре называют массовым числом и обозначают буквой А:
А = Z + N
Массы протона и нейтрона близки друг к другу, и каждая из них примерно равна атомной единице массы. Масса электронов в атоме много меньше массы его ядра. Поэтому массовое число ядра равно округленной до целого числа относительной атомной массе элемента. Массовые числа могут быть определены путем приближенного измерения массы ядер приборами, не обладающими высокой точностью.
Изотопы представляют собой ядра с одним и тем же значением но с различными массовыми числами A, т. е. с различными числами нейтронов N.
Регистрирующий прибор — это более или менее сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу. В настоящее время используется множество различных методов регистрации частиц.
В зависимости от целей эксперимента и условий, в которых он проводится, применяются те или иные регистрирующие устройства, отличающиеся друг от друга по основным характеристикам.
Газоразрядный счетчик Гейгера. Счетчик Гейгера — один из важнейших приборов для автоматического подсчета частиц.
Счетчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Действие счетчика основано на ударной ионизации. Заряженная частица (электрон, -частица и т. д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство.
Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный paзряд, необходимо погасить. Это происходит автоматически. Так как в момент появления импульса тока падение напряжения на нагрузочном резисторе R велико, то напряжение между анодом и катодом резко уменьшается — настолько, что разряд прекращается.
Счетчик Гейгера применяется в основном для регистрации электронов и -квантов (фотонов большой энергии). В настоящее время созданы счетчики, работающие на и иных принципах.
Камера Вильсона. Счетчики позволяют лишь регистрировать факт прохождения через них частицы и фиксировать некоторые ее характеристики. В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать окном в микромир, т. е. мир элементарных частиц и состоящих из них систем.
Принцип действия камеры Вильсона основан на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создает вдоль своей траектории движущаяся заряженная частица.
Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению. При резком опускании поршня, вызванном уменьшением давления под ним, пар в камере адиабатно расширяется. Вследствие этого происходит охлаждение, и пар становится перенасыщенным. Это — неустойчивое состояние пара: он легко конденсируется, если в сосуде появляются центры конденсации. Центрами конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру сразу после расширения пара, то на ее пути появляются капельки воды. Эти капельки образуют видимый след пролетевшей частицы — трек. Затем камера возвращается в исходное состояние, и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима варьируется от нескольких секунд до десятков минут.
Информация, которую дают треки в камере Вильсона, значительно богаче той, которую могут дать счетчики. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека — ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщины.
Советские физики П. Л. Капица и Д. В. Скобельцын предложили помещать камеру Вильсона в однородное магнитное поле.
Магнитное поле действует на движущуюся заряженную частицу с определенной силой (силой Лоренца). Эта сила искривляет траекторию частицы, не изменяя модуля ее скорости. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы к ее массе. Если известна одна из этих величин, то можно вычислить другую. Например, по заряду частицы и кривизне ее трека можно найти массу частицы.
В 1952 г. американским ученым Д. Глейзером было предложено использовать для обнаружения треков частиц перегретую жидкость. В такой жидкости на ионах (центрах парообразования), образующихся при движении быстрой заряженной частицы, появляются пузырьки пара, дающие видимый трек. Камеры данного типа были названы пузырьковыми.
В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости несколько выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой, и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженные частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара (рис. 1.4.4). В качестве жидкости используются главным образом жидкий водород и пропан. Длительность рабочего цикла пузырьковой камеры невелика — около 0,1 с.
Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.
Треки в камере Вильсона и пузырьковой камере — один из главных источников информации о поведении и свойствах частиц. Наблюдение следов элементарных частиц производит сильное впечатление, создает ощущение непосредственного соприкосновения с микромиром.
Метод толстослойных фотоэмульсий. Для регистрации частиц наряду с камерами Вильсона и пузырьковыми камерами применяются толстослойные фотоэмульсии. Ионизирующее действие быстрых заряженных частиц на эмульсию фотопластинки позволило французскому физику А. Беккерелю открыть в 1896 г. радиоактивность. Метод фотоэмульсии был развит советскими физиками Л. В. Мысовским, Г. Б. Ждановым и др.
Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра. Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома. Цепочка таких кристалликов образует скрытое изображение. При проявлении в этих кристалликах восстанавливается металлическое серебро, и цепочка зерен серебра образует трек частицы. По длине и толщине трека можно оценить энергию и массу частицы.
Из-за большой плотности фотоэмульсии треки получаются очень короткими (порядка 10-3 см для -частиц, испускаемых радиоактивными элементами), но при фотографировании их можно увеличить.
Преимущество фотоэмульсий в том, что время экспозиции может быть сколь угодно большим. Это позволяет регистрировать редкие явления. Важно и то, что благодаря большой тормозящей способности фотоэмульсий увеличивается число наблюдаемых интересных реакций между частицами и ядрами.
Модель Томсона. Не сразу ученые пришли к правильным представлениям о строении атома. Первая модель атома была предложена английским физиком Дж. Дж. Томсоном, открывшим электрон. По мысли Томсона, положительный заряд атома занимает весь объем атома и распределен в этом объеме с постоянной плотностью. Простейший атом — атом водорода — представляет собой положительно заряженный шар радиусом около 10-8 см, внутри которого находится электрон. У более сложных атомов в положительно заряженном шаре находится несколько электронов, так что атом подобен кексу, в котором роль изюминок выполняют электроны.
Однако модель атома Томсона оказалась в полном противоречии с известными уже к тому времени свойствами атома, главным из которых является устойчивость.
Опыты Резерфорда. Масса электронов в несколько тысяч раз меньше массы атомов. Так как атом в целом нейтрален, то, следовательно, основная масса атома приходится на его положительно заряженную часть.
Для экспериментального исследования распределения положительного заряда, а значит, и массы внутри атома Эрнест Резерфорд предложил в 1906 г. применить зондирование атома с помощью α - частиц. Эти частицы возникают при распаде радия и некоторых других элементов. Их масса примерно в 8000 раз больше массы электрона, а положительный заряд равен по модулю удвоенному заряду электрона. Это не что иное, как полностью ионизированные атомы гелия. Скорость α - частиц очень велика: она составляет 1/15 скорости света.
Этими частицами Резерфорд бомбардировал атомы тяжелых элементов. Электроны вследствие своей малой массы не могут заметно изменить траекторию α - частицы, подобно тому, как камушек в несколько десятков граммов при столкновении с автомобилем не может значительно изменить его скорость.
Рассеяние (изменение направления движения) α - частиц может вызвать только положительно заряженная часть атома. Таким образом, по рассеянию α - частиц можно определить характер распределения положительного заряда и массы внутри атома.
Радиоактивный препарат, например радий, помещался внутри свинцового цилиндра l, вдоль которого был высверлен узкий канал. Пучок α - частиц из канала падал на тонкую фольгу 2 из исследуемого материала (золото, медь и пр.). После рассеяния α - частицы попадали на полупрозрачный экран 3, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось вспышкой света (сцинтилляцией), которую можно было наблюдать в микроскоп 4. Весь прибор размещался в сосуде, из которого был откачан воздух.
При хорошем вакууме внутри прибора в отсутствие фольги на экране возникал светлый кружок, состоящий из сцинтилляций, вызванных топким пучком α - частиц. Но когда на пути пучка помещали фольгу, α - частицы из-за рассеяния распределялись на экране по кружку большей площади.
Модифицируя экспериментальную установку, Резерфорд попытался обнаружить отклонение α - частиц на большие углы. Для этого он окружил фольгу сцинтилляциоными экранами и определил число вспышек на каждом экране. Совершенно неожиданно оказалось, что небольшое число α - частиц (примерно одна из двух тысяч) отклонилось на углы, большие 90°. Позднее Резерфорд признался, что, предложив своим ученикам провести эксперимент по наблюдению за рассеянием -частиц на большие углы, он сам не верил в положительный результат. «Это почти столь же невероятно, — говорил Резерфорд, — как если бы вы выстрелили 15-дюймовым снарядом в кусок тонкой бумаги, а снаряд возвратился бы к вам и нанес вам удар».
В самом деле, предвидеть этот результат на основе модели Томсона было нельзя. При распределении по всему атому положительный заряд не может создать достаточно сильное электрическое поле, способное отбросить α - частицу назад. Максимальная сила отталкивания может быть определена по закону Кулона:
где q — заряд α - частицы; q — положительный заряд атома; R — его радиус; k — коэффициент пропорциональности. Напряженность электрического поля равномерно заряженного шара максимальна на поверхности шара и убывает до нуля по мере приближения к центру. Поэтому чем меньше радиус R, тем больше сила, отталкивающая α - частицы.
Определение размеров атомного ядра. Резерфорд понял, что α - частица могла быть отброшена назад лишь в том случае, если положительный заряд атома и его масса сконцентрированы в очень малой области пространства. Так Резерфорд пришел к мысли о существовании атомного ядра — тела малых размеров, в котором сконцентрированы почти вся масса и весь положительный заряд атома.
Подсчитывая число α - частиц, рассеянных на различные углы, Резерфорд смог оценить размеры ядра. Оказалось, что ядро имеет диаметр порядка 10-12—10-13 см (у разных ядер диаметры различны). Размер же самого атома 10-8 см, т. е. в 10—100 тысяч раз превышает размеры ядра. Впоследствии удалось определить и заряд ядра. При условии, что заряд электрона принят за единицу, заряд ядра в точности равен номеру данного химического элемента в периодической системе Д. И. Менделеева.
Планетарная модель атома. На основе своих опытов Резерфорд создал планетарную модель атома. В центре атома расположено положительно заряженное ядро, в котором сосредоточена почти вся масса атома. В целом атом нейтрален. Поэтому число внутриатомных электронов, как и заряд ядра, равно порядковому номеру элемента в периодической системе. Ясно, что покоиться электроны внутри атома не могут, так как они упали бы на ядро. Они движутся вокруг ядра, подобно тому как планеты обращаются вокруг Солнца. Такой характер движения электронов определяется действием кулоновских сил притяжения со стороны ядра.
В атоме водорода вокруг ядра обращается всего лишь один электрон. Ядро атома водорода имеет положительный заряд, равный по модулю заряду электрона, и массу, примерно в 1836,1 раза большую массы электрона. Это ядро было названо протоном и стало рассматриваться как элементарная частица. Размер атома водорода — это радиус орбиты его электрона.
Простая и наглядная планетарная модель атома имеет прямое экспериментальное обоснование. Она кажется совершенно необходимой для объяснения опытов по рассеиванию -частиц. Но на основе этой модели нельзя объяснить факт существования атома, его устойчивость. Ведь движение электронов по орбитам происходит с ускорением, причем весьма немалым. Ускоренно движущийся заряд по законам электродинамики Максвелла должен излучать электромагнитные волны с частотой, равной частоте его обращения вокруг ядра. Излучение сопровождается потерей энергии. Теряя энергию, электроны должны приближаться к ядру, подобно тому, как спутник приближается к Земле при торможении в верхних слоях атмосферы. Как показывают строгие расчеты, основанные на механике Ньютона и электродинамике Максвелла, электрон за ничтожно малое время (порядка 10-8 м) должен упасть на ядро. Атом должен прекратить свое существование.
В действительности ничего подобного не происходит. Атомы устойчивы и в невозбужденном состоянии могут существовать неограниченно долго, совершенно не излучая электромагнитные волны.
Не согласующийся с опытом вывод о неизбежной гибели атома вследствие потери энергии на излучение — это результат применения законов классической физики к явлениям, происходящим внутри атома. Отсюда следует, что к таким явлениям законы классической физики неприменимы.
Резерфорд создал планетарную модель атома: электроны обращаются вокруг ядра, подобно тому как планеты обращаются вокруг Солнца. Эта модель проста, обоснована экспериментально, но не позволяет объяснить устойчивость атома.
Выход из крайне затруднительного положения в теории атома был найден в 1913 г. датским физиком Нильсом Бором на пути дальнейшего развития квантовых представлений о процессах в природе.
Эйнштейн оценивал проделанную Бором работу «как высшую музыкальность в области мысли», всегда его поражавшую. Основываясь на разрозненных опытных фактах. Бор благодаря гениальной интуиции правильно предугадал путь развития теории атома.
Постулаты Бора. Последовательной теории атома Бор не разработал. Он в виде постулатов сформулировал основные положения новой теории. Причем и законы классической физики не отвергались им безоговорочно. Новые постулаты, скорее, налагали лишь некоторые ограничения на рассматриваемые классической физикой движения.
Успех теории Бора был, тем не менее, поразительным, и всем ученым стало ясно, что Бор нашел правильный путь развития теории. Этот путь привел впоследствии к созданию стройной теории движения микрочастиц — квантовой механики.
Первый постулат Бора гласит: существуют особые, стационарные состояния атома, находясь в которых атом не излучает энергию, при этом электроны в атоме движутся с ускорением. Каждому стационарному состоянию соответствует определенная энергия Еn.
Отсюда частоту излучения можно выразить так:
Согласно теории Бора энергия электрона в атоме водорода, находящегося на n-м энергетическом уровне, равна:
При поглощении света атом переходит из стационарного состояния с меньшей энергией в стационарное состояние с большей энергией.
Второй постулат, также как и первый, противоречит электродинамике Максвелла, так как согласно этому постулату частота излучения света свидетельствует не об особенностях движения электрона, а лишь об изменении энергии атома.
Свои постулаты Бор применил для построения теории простейшей атомной системы — атома водорода. Основная задача состояла в нахождении частот электромагнитных волн, излучаемых водородом. Эти частоты можно найти на основе второго постулата и правила определения стационарных значений энергии атома. Это правило (так называемое правило квантования) Бору опять-таки пришлось постулировать.
Модель атома водорода по Бору. Используя законы механики Ньютона и правило квантования, на основе которого определяются возможные стационарные состояния атома. Бор смог вычислить радиусы орбит электрона и энергии стационарных состояний атома. Минимальный радиус орбиты определяет размеры атома. На рисунке 12.4 значения энергий стационарных состояний (в электрон-вольтах - 1 эВ равен энергии, приобретаемой электроном при прохождении им разности потенциалов 1 В: 1 эВ = 1,6 . 10 Дж) отложены на вертикальной оси.
Второй постулат Бора позволяет вычислить по известным значениям энергий стационарных состояний частоты излучений атома водорода.
Теория Бора приводит к количественному согласию с экспериментом для значений этих частот. Все частоты излучений атома водорода составляют в своей совокупности ряд серий, каждая из которых образуется при переходах атома в одно из энергетических состояний со всех верхних энергетических состояний (состояний с большей энергией).
Переходы в первое возбужденное состояние (на второй энергетический уровень) с верхних уровней образуют серию Бальмера. Красная, зеленая и две синие линии в видимой части спектра водорода соответствуют переходам
Данная серия названа по имени швейцарского учителя И. Бальмера, который еще в 1885 г. на основе экспериментальных данных вывел простую формулу для определения частот видимой части спектра водорода.
4. Закрепление нового материала: 17-20 мин
Вопросы для самоконтроля:
1. Из каких частиц состоят ядра атомов?
2. Что называют массовым числом? зарядовым числом?
3. Как связан заряд атомного ядра с порядковым номером химического элемента?
4. Почему заряд ядра определяет химические свойства атома?
1. Какую модель строения атома предложил Дж. Дж. Томсон?
2. Какая модель строения атома была предложена Резерфордом?
3. Сформулируйте постулаты Бора.
4. Какие состояния атома называются стационарными?
5. Какое состояние называется основным, и какие состояния называются возбужденными состояниями?
6. Как описываются состояния атомов с помощью энергетических диаграмм?
7. Как на основе ядерной модели строения атома можно объяснить результаты рассеяния альфа-частиц в тонких слоях вещества?
5. Задание на дом: 5 мин
гл. 35 § 15-16
6. Подведение итогов: 5 мин
(выставляются оценки, их комментарий)