Урок «Нахождение корней квадратного трехчлена» (Алгебра, 9 класс)

5
0
Материал опубликован 25 June 2017 в группе

У р о к 7.
Нахождение корней квадратного трехчлена

Цели: ввести понятие квадратичного трехчлена и его корней; формировать умение находить корни квадратного трехчлена.

Ход урока

I. Организационный момент.

II. Устная работа.

Какие из чисел: –2; –1; 1; 2 – являются корнями уравнений?

а) 8х + 16 = 0; в) х2 + 3х – 4 = 0;

б) 5х2 – 5 = 0; г) х3 – 3х – 2 = 0.

III. Объяснение нового материала.

Объяснение нового материала проводить по следующей с х е м е:

1) Ввести понятие корня многочлена.

2) Ввести понятие квадратного трехчлена и его корней.

3) Разобрать вопрос о возможном количестве корней квадратного трехчлена.

Вопрос о выделении квадрата двучлена из квадратного трехчлена лучше разобрать на следующем уроке.

На каждом этапе объяснения нового материала необходимо предлагать учащимся устное задание на проверку усвоения основных моментов теории.

З а д а н и е 1. Какие из чисел: –1; 1; ; 0 – являются корнями многочлена х4 + 2х2 – 3?

З а д а н и е 2. Какие из следующих многочленов являются квадратными трехчленами?

1) 2х2 + 5х – 1; 6) х2х;

2) 2х; 7) 3 – 4х + х2;

3) 4х2 + 2х + х3; 8) х + 4х2;

4) 3х2; 9) + 3х – 6;

5) 5х2 – 3х; 10) 7х2.

Какие из квадратных трёхчленов имеют корень 0?

З а д а н и е 3. Может ли квадратный трехчлен иметь три корня? Почему? Сколько корней имеет квадратный трехчлен х2 + х – 5?

IV. Формирование умений и навыков.

Упражнения:

1. № 55, № 56, № 58.

2. № 59 (а, в, д), № 60 (а, в).

3. № 61.

В этом задании не нужно искать корни квадратных трехчленов. Достаточно найти их дискриминант и ответить на поставленный вопрос.

а) 5х2 – 8х + 3 = 0;

D1 = 16 – 15 = 1;

D1 > 0, значит, данный квадратный трехчлен имеет два корня.

б) 9х2 + 6х + 1 = 0;

D1 = 9 – 9 = 0;

D1 = 0, значит, квадратный трехчлен имеет один корень.

в) –7х2 + 6х – 2 = 0;

7х2 – 6х + 2 = 0;

D1 = 9 – 14 = –5;

D1 < 0, значит, квадратный трехчлен не имеет корней.

Если останется время, можно выполнить № 63.

Р е ш е н и е

Пусть ax2 + bx + c – данный квадратный трехчлен. Поскольку a + b +
+ c = 0, то один из корней этого трехчлена равен 1. По теореме Виета второй корень равен . Согласно условию, с = 4а, поэтому второй корень данного квадратного трехчлена равен .

О т в е т: 1 и 4.

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

Что такое корень многочлена?

Какой многочлен называют квадратным трехчленом?

Как найти корни квадратного трехчлена?

Что такое дискриминант квадратного трехчлена?

Сколько корней может иметь квадратный трехчлен? От чего это зависит?

Домашнее задание: № 57, № 59 (б, г, е), № 60 (б, г), № 62.

в формате Microsoft Word (.doc / .docx)
Комментарии
Комментариев пока нет.