План-конспект урока по алгебре в 8 классе малокомплектной школы. Решение квадратных уравнений

23
0
Материал опубликован 9 September 2016 в группе

ПЕРВУШКИН БОРИС НИКОЛАЕВИЧ

Учитель Математики высшей категории

ЧОУ «Санкт-Петербургская Школа «Тет-а Тет»

План-конспект урока по математике в 8 классе малокомплектной школы.

Решение квадратных уравнений.

Краткое описание 
Тема урока
: Решение квадратных уравнений.
Место урока в учебном плане (программе)  — Глава III. Квадратные уравнения,10-ый  урок по теме главы;
Цель урока: систематизировать знания учащихся по теме: «Квадратные уравнения».

Описание 
План-конспект урока по математике в 8 классе малокомплектной школы.


 
Задачи урока:

а) образовательные: продолжить работу над формированием таких математических умений, как решение неполных квадратных уравнений, решение квадратных уравнений по формуле, решение тестовых задач; создать условия самоконтроля и взаимоконтроля.
б) 
развивающие: развитие навыков контроля и самоконтроля, развитие памяти, математической речи.
в)
воспитательные: воспитание у учащихся аккуратности, вычислительной культуры.
 
Оборудование: таблица с формулами, компьютер, набор карточек.
 

Тип урока: урок систематизации знаний,  обобщения умений и навыков учащихся.
План урока.
  
I. Организационный момент. (3 мин.)
II. Актуализация опорных знаний. (10 мин.)
II. Тренировочные упражнения. (20 мин.)
IV. Самостоятельная работа. (10 мин.)
V.  Итог урока. (2 мин.)

 

Ход урока.

I. Организационный момент.
— определение целей и задач урока;
— определение плана учебной деятельности;
— задание на дом: п. 19-24. № 654(а, б) № 671(а), индивидуальное задание ( для более подготовленных учащихся): в квадратном уравнении 6х
+ вх +18=0 найдите в, если известно, что корни уравнения- целые числа.
 
II. Актуализация опорных знаний. Устная работа.
 
1. Какие уравнения называются квадратными?
2. Назовите алгоритм решения полного квадратного уравнения. ( Приложение 1.)
3. Сформулируйте теорему Виета.
4. Определите сколько корней имеет квадратное уравнение:
     х
+ 2х – 3 =0 ;  х– 4х+ 4 = 0;   2х2 – 5х + 10 =0.
5.Найдите второй корень квадратного  уравнения, если известен первый корень,     используя теорему Виета:
     х
– 2х — 3=0 (х1= -1);  х-7х +10=0 (х=5);  х2 +3х-18=0 (х1= -6)
6. Установите связь между каждым квадратным уравнением и способом его решения (Приложение 2).
 
III. Тренировочные упражнения.
1.Решите квадратное уравнение 5(х-2)= (3х+2)(х-2) 
2.Один из корней квадратного уравнения равен 7. Найдите коэффициент р и второй корень уравнения х
2+ рх -35 =0.
3.Решите задачу с помощью квадратного уравнения.
Фотография размером 12 см на 18 см наклеена на лист так, что получилась рамка одинаковой ширины. Определите ширину рамки, если известно, что фотокарточка вместе с рамкой занимает площадь 280 см
.
 
IV. Самостоятельная работа ( из материалов подготовки к ГИА) в виде теста.( карточки –задания и карточки –бланки ответов раздаются на каждого ученика)
 

Карточка –задание.

А1

Какие из уравнений являются квадратными?

2-13х+4=0

1-12х=0

3-4х2+5х-1=0

 А2

Какое из уравнений является приведенным?

2-7х-1=0

х2-3х=4=0

х2+6х-4=0

А3

Назовите коэффициенты квадратного уравнения 5х-9х +4=0.

а=5; в=-9; с=4

а=5; в=9; с=4

а=4; в=-9; с=5.

А4

Найдите сумму корней квадратного уравнения х2 -16х +28 =0.

16.

28.

-16.

А5

Найдите произведение корней квадратного уравнения у2+ 42у -28 =0.
    1.42.
    2. -28
    3.28

В1

Решите неполное квадратное уравнение  5х2 +15 =0 и запишите ответ

В2

Решите полное квадратное уравнение 
 2х
2 -3х -2 =0 и запишите ответ

С

Решите задачу, подробно описав решение
Периметр прямоугольника равен 30см. Найдите стороны прямоугольника, если известно, что площадь прямоугольника равна 56 см
2.


Бланк ответов.

А1

А2

А3

А4

А5

1

 

 

 

 

 

2

 

 

 

 

 

3

 

 

 

 

 

В1

 

В2

 

 
 
С

 
 
 
 
 
 
 
 


V. Итог урока.

Используемые образовательные технологии: технологии поддерживающего обучения   (традиционного обучения, разноуровневого обучения); 
 личностно ориентированные технологии обучения;  
 технологии развивающего обучения (проблемного обучения.
 

Используемый УМК:  

— Алгебра. 8 класс: поурочные планы по учебнику  Ю.Н.  Макарычева и др. / авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. – Волгоград: Учитель, 2007. – 303 с.;
— Алгебра: Учеб. для 8 кл. общеобразоват.  учреждений / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2008;
— Государственный стандарт основного общегообразования по математике;
—Дидактические материалы по алгебре для 8   класса / В.И. Жохов, Ю.Н. Макарычев, Н.Г. Миндюк. – М.: Просвещение, 2006. – 144 с.
— Нестандартные уроки алгебры. 8 класс. / Сост.  Н.А. Ким. – Волгоград: ИТД «Корифей», 2006. – 112 с;
— Программы общеобразовательных учреждений.   Алгебра. 7-9 классы. Составитель: Бурмистрова Т.А. – М.: Просвещение, 2009 г.;
— http://school-collection.edu.ru/ – единая коллекция   цифровых образовательных ресурсов.


 

Комментарии
Комментариев пока нет.