Урок алгебры «Взаимное расположение графиков линейных функций» (7 класс)
Урок алгебры в 7 классе Учитель Костина Вера Евгеньевна
Проблема
Проблема
Проблема Современные строительные технологии гарантируют качественное строительство, но жизнь показывает, что современные постройки часто претерпевают разрушение
Проблемный вопрос Что необходимо знать и уметь для того, чтобы определять, как расположены относительно друг друга прямые на координатной плоскости?
Тема урока Взаимное расположение графиков линейных функций
Сегодня на уроке мы: 1.Повторим определения по теме «Линейная функция»; 2.Научимся по внешнему виду формул, задающих линейные функции, устанавливать взаимное расположение графиков этих функций; 3.Закрепим полученные знания на практике;
Проектное бюро
Вопросы для повторения: 1)Что называется линейной функцией? 2)Что собой представляет график линейной функции? Сколько точек достаточно выбрать для построения графика линейной функции? 3)Какой вид имеет прямая пропорциональность? 4)Какова особенность расположения графика прямой пропорциональности на координатной плоскости?
Делаем отметки в сводке
Практическая значимость линейных функций
Практическая значимость линейных функций
Практическая значимость линейных функций
Исследовательская работа
Для глаз Физкультминутка
Выводы по исследовательской работе
Группы ставят отметки в сводке
Тест Прямые параллельны Прямые совпадают Прямые пересекаются (2 пары) Прямые пересекаются в точке (0; m) у=1,3х+5 у=2х -4 у=1,3х – 6 у= -7х -4 у=2х -4
Критерии оценок Без ошибок-5 1 ошибка- 4 2 ошибки -3 3 и более ошибок - 2
Группы делают отметки в сводке Подводят итог, выставляют оценку за урок
Домашнее задание 1.Для всех :с.113 №939, №941, опорный конспект 2.(по выбору) Составить кроссворд не менее 15 слов по теме «Линейная функция и её график» 3.(по выбору) Сочинить сказку , где главной героиней является линейная функция.
Проблемный вопрос -Что необходимо знать и уметь для того, чтобы определять, как расположены относительно друг друга прямые на координатной плоскости? - Для чего, в каких ситуациях вам могут пригодиться эти знания?