Статья на тему «Математические методы и модели в медицине»
В XVIII—XIX веках в России сложились благоприятные условия для развития статистики. В 1804 г. при Академии наук был организован факультет статистики. Согласно “Уставу учебных заведений, подведомственных университетам” (приходские, уездные училища и гимназии) эти заведения обязаны были иметь кафедру статистики. В 1806—1808 гг. усилиями русского статистика профессора Санкт-Петербургс кого университета К.Ф. Германа был организован “Статистический журнал”. К.Ф. Герман видел функции статистики не в простом сборе фактов, а в их анализе и обобщении.
Все это вело к широкому проникновению статистической методологии в российскую медицину. Пожалуй, самым активным сторонником использования в ней статистики был основоположник военно-полевой хирургии Н. И. Пирогов. Еще в 1849 г., говоря об успехах отечественной хирургии, он указывал: “... приложение статистики для определения диагностической важности симптомов и достоинства операций можно ... рассматривать как важное приобретение новейшей хирургии”. В своем учебнике по основам военно-полевой хирургии Н.И. Пирогов пишет: “Я принадлежу к ревностным сторонникам рациональной статистики и верю, что приложение ее к военной хирургии есть несомненный прогресс” .
Известный российский терапевт и организатор земской медицины В.А. Манассеин в своих клинических лекциях уделял большое внимание медицинской статистике. “Для проверки в клинике имеются два пути, отнюдь не исключающие друг друга и одинаково важные. Я разумею путь статистического доказательства, с одной стороны, и точное клиническое наблюдение каждого отдельного случая — с другой” .
Наиболее активное внедрение статистической методологии в медицину отмечалось в Военно-медицинской академии (Санкт-Петербург). В ее стенах был защищен ряд диссертаций, в которых обобщалась работа по систематизации обширных медико-статистических данных с применением математической обработки результатов.
В 60-е годы XX века после очевидных успехов прикладной статистики в технике и точных науках вновь начал расти интерес к использованию статистики в биологии и медицине. В журналах “Вопросы философии” и “Вестник высшей школы” периодически стали появляться статьи на эту тему. Так, В.В. Алпатов в статье “О роли математики в медицине” писал: “Чрезвычайно важна математическая оценка терапевтических воздействий на человека. Новые лечебные мероприятия имеют право заменить собою мероприятия, уже вошедшие в практику, лишь после обоснованных статистических испытаний сравнительного характера. ... Огромное применение может получить статистическая теория в постановке клинических и внеклинических испытаний новых терапевтических и хирургических мероприятий. ... Здесь необходимо подчеркнуть то, что математик-статистик должен включаться в работу медика-экспериментатора на самых начальных этапах этой работы”.
Хорошо известно, что один из подходов к описанию картины природы - это построение иерархии уровней организации, изучаемых различными науками; по уровню абстракции, свойственному каждой из них, эти науки можно расположить в такой последовательности: физика, химия, биохимия, физиология, психология, социология.
Проблемы, касающиеся организации и деятельности больниц, следует отнести к более высокому уровню абстракции, чем, скажем, физиологию и патологию человека. Но хотя в определенной степени логическое содержание этого более высокого уровня независимо от более низкого, вопросы физиологии и патологии неизбежно должны учитываться при решении любой проблемы, касающейся организации больничных служб.
Для постановки диагноза врач совместно с другими специалистами часто бывает вынужден учитывать самые разнообразные факты, опираясь отчасти на свой личный опыт, а отчасти на материалы, приводимые в многочисленных медицинских руководствах и журналах.
Общее количество информации увеличивается со все возрастающей интенсивностью, и есть такие болезни, о которых уже столько написано, что один человек не в состоянии в точности изучить, оценить, объяснить и использовать всю имеющуюся информацию при постановке диагноза в каждом конкретном случае. Разумеется, хороший диагност, используя свой большой опыт и интуицию, может отобрать необходимую часть важных данных и дать достаточно точное заключение.
В тех случаях, когда задача содержит большое число существенных взаимозависимых факторов, каждый из которых в значительной мере подвержен естественной изменчивости, только с помощью правильно выбранного статистического метода можно точно описать, объяснить и углубленно исследовать всю совокупность взаимосвязанных результатов измерений. Если число факторов или важных результатов настолько велико, что человеческий разум не в состоянии их обработать даже при введении некоторых статистических упрощений, то обработка данных может быть произведена на электронной вычислительной машине.
В медицине часто возникают сложные проблемы, связанные с применением лекарственных препаратов, которые еще находятся на стадии испытания. Морально врач обязан предложить своему больному наилучший из существующих препаратов, но фактически он не может сделать выбор, пока испытание не будет закончено. В этих случаях применение правильно спланированных последовательностных статистических испытаний позволяет сократить время, требуемое для получения окончательных результатов. Этические проблемы при этом не снимаются, однако такой математический подход несколько облегчает их решение.
Метод моделиpования в медицине является сpедством, позволяющим устанавливать все более глубокие и сложные взаимосвязи между теоpией и опытом. В последнее столетие экспеpиментальный метод в медицине начал наталкиваться на опpеделенные гpаницы, и выяснилось, что целый pяд исследований невозможен без моделиpования. Если остановиться на некотоpых пpимеpах огpаничений области пpименения экспеpимента в медицине, то они будут в основном следующими:
а) вмешательство в биологические системы иногда имеет такой хаpактеp, что невозможно установить пpичины появившихся изменений (вследствие вмешательства или по дpугим пpичинам);
б) некотоpые теоpетически возможные экспеpименты неосуществимы вследствие низкого уpовня pазвития экспеpиментальной техники;
в) большую группу экспериментов, связанных с экспериментированием на человеке, следует отклонить по моpально-этическим сообpажениям.
Но, моделиpование находит шиpокое пpименение в области медицины не только из-за того, что может заменить экспеpимент. Оно имеет большое самостоятельное значение, котоpое выpажается в целом pяде пpеимуществ:
1) с помощью метода моделиpования на одном комплексе данных можно pазpаботать целый pяд pазличных моделей, по-pазному интеpпpетиpовать исследуемое явление, и выбpать наиболее плодотвоpную из них для теоpетического истолкования.
2) в пpоцессе постpоения модели можно сделать pазличные дополнения к исследуемой гипотезе и получить ее упpощение.
3) в случае сложных математических моделей можно пpименять ЭВМ.
4) откpывается возможность пpоведения модельных экспеpиментов (модельные экспеpименты на подопытных животных).
Все это ясно показывает, что моделиpование выполняет в медицине самостоятельные функции и становится все более необходимой ступенью в пpоцессе создания теоpии.
Во второй половине двадцатого столетия широкое развитие получила такая сопутствующая медицине наука как иммунология. Успехи, достигнутые в иммунологии, оказывают прямое влияние на методы лечения, на всю клиническую практику в медицине. Проблемы иммунологии тесно связаны с проблемами лечения (послеоперационное заживление ран, трансплантация органов, раковые заболевания, аллергии и иммунодефициты).
К настоящему времени клиницистами и иммунологами накоплен огромный материал наблюдений за течением различных инфекционных заболеваний и на основе анализа этого материала получены фундаментальные результаты, касающиеся механизмов взаимодействия антигенов и антител на различном уровне детализации: от макроскопического до внутриклеточного генетического. Эти результаты позволили подойти к построению математических моделей иммунных процессов. Г.И Марчуком была разработана простейшая математическая модель, основанная на соотношении баланса для каждого из компонентов участвующих в иммунном ответе. Именно ввиду такой концепции частные особенности функционирования иммунной системы не оказываются существенными для анализа динамики болезни, а на первый план выступают основные закономерности протекания защитной реакции организма. Поэтому при построении математической модели не будут различаться клеточные и гуморальные компоненты иммунитета, участвующие в борьбе с антигенами, проникшими в организм.
Задача 1. Курс воздушных ванн начинают с 15 минут в первый день и увеличивают время этой процедуры в каждый следующий день на 10 минут. Сколько дней следует принимать воздушные ванны в указанном режиме, чтобы достичь их максимальной продолжительности 1ч 45 мин?
Задача 2. Если смешать 8 кг и 2 кг растворов серной кислоты разной концентрации, то получим 12-ти процентный раствор кислоты. При смешивании двух одинаковых масс тех же растворов получим 15-ти процентный раствор. Определите первоначальную концентрацию каждого раствора.
Таким образом, в медицине исторически применяется математическая статистика. Кроме того, использование математики возможно при определении продолжительности курса лечения (в случае определения математического закона зависимости), концентрации растворов лекарственных средств и др.