Рабочая программа по геометрии (7 класс, УМК Л.С. Атанасяна)
/data/files/h1475513383.doc (РП Г7)
Пояснительная записка
Рабочая программа по геометрии для учащихся 7 класса представлена в соответствии с ФГОС примерной программы по геометрии для основного общего образования и авторской программы, разработанной Л.С. Атанасяном.
В содержании и требованиях к уровню подготовки обучающихся расхождений нет.
Л.С. Атанасян приводит тематическое планирование из расчёта 2 часа в неделю, 68 часов в год.
Содержание программы:
1. Начальные геометрические сведения
Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.
Цель: систематизировать знания обучающихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.
В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений обучающихся путем обобщения очевидных или известных из курса математики I— 6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.
2. Треугольники
Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.
Цель: ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач — на построение с помощью циркуля и линейки.
Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников — обоснование их равенства с помощью какого-то признака — следствия, вытекающие из равенства треугольников.
Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.
3. Параллельные прямые
Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.
Цель: ввести одно из важнейших понятий - понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.
Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.
4. Соотношения между сторонами и углами треугольника
Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.
Цель: рассмотреть новые интересные и важные свойства треугольников.
В данной теме доказывается одна из важнейших теорем геометрии — теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.
Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, и частности используется в задачах на построение.
При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.
Повторение. Решение задач.
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 7 класса.
Требования к уровню подготовки учащихся:
В результате изучения данного курса учащиеся должны уметь:
вычислять объемы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
применять понятие развертки для выполнения практических расчетов;
овладевать методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
овладевать традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
решать задачи на построение методом геометрического места точек;
вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
вычислять площади многоугольников, используя отношения равновеликости и равносоставленности.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
описания реальных ситуаций на языке геометрии;
расчетов, включающих простейшие формулы;
решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).
Календарно-тематический план
№ |
Название темы |
Количество часов, примерные сроки |
Контрольные мероприятия, примерные сроки |
Основное содержание |
Требования к уровню подготовки обучающихся |
1 |
Начальные геометрические сведения |
10 1.09-5.10 |
К/р № 1 2.10 |
Прямая и отрезок. Луч и угол. Сравнение отрезков и углов. Измерение отрезков. Измерение углов. Перпендикулярные прямые. |
Цель – систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур. |
2 |
Треугольники |
17 6.10-10.12 |
К/р № 2 9.12 |
Первый признак равенства треугольников. Медианы, биссектрисы, высоты треугольника. Второй и третий признаки равенства треугольников. Задачи на построение. |
Цель – ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач – на построение с помощью циркуля и линейки.
|
3 |
Параллельные прямые |
12 11.12-1.02 |
К/р № 3 29.01 |
Признаки параллельности двух прямых. Аксиома параллельных прямых. Свойства параллельных прямых. |
Цель – ввести одно из важнейших понятий – понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых. |
4 |
Соотношение между сторонами и углами треугольника |
18 2.02-12.04 |
К/р № 4 9.04 |
Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Прямоугольные треугольники. Построение треугольника по трем элементам. |
Цель – рассмотреть новые интересные и важные свойства треугольников. |
5 |
Повторение. Решение задач. |
11 13.04-31.05 |
К/р №5, 21.05 |
Геометрические понятия. Признаки равенства треугольников. Параллельные прямые и их свойства. Стороны и углы в треугольнике. |
Перечень используемого учебно-методического комплекта:
- Атанасян Л.С. Геометрия 7 – 9. Учебник для 7 – 9 классов средней школы. М., «Просвещение», 2006.
- Бурмистрова Т.А. Геометрия 7 - 9 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2009.
- Дорофеев Г. В. и др. Оценка качества подготовки выпускников основной школы по математике. М., «Дрофа», 2001.
- Концепция модернизации российского образования на период до 2010// «Вестник образования» -2002- № 6 - с.11-40.
- Концепция математического образования (проект)//Математика в школе.- 2000. – № 2. – с.13-18. 6. Стандарт основного общего образования по математике//«Вестник образования» -2004 - № 12 - с.107-119.