Вводный урок
по геометрии 7 класс
Составила:
учитель математики
Медведева Любовь Васильевна
2017 г.
Вводный урок. Знакомство с предметом.
Цели:
Образовательные – познакомить учащихся с историей возникновения геометрии, с первыми основными геометрическими понятиями; с простейшими геометрическими фигурами на плоскости.
Развивающие – развивать творческую и мыслительную деятельность учащихся на уроке, интеллектуальные качества личности школьников такие, как самостоятельность, обобщению, быстрому переключению; способствовать формированию навыков самостоятельной работы; формировать умение четко и ясно излагать свои мысли.
Воспитательные – прививать учащимся интерес к предмету с помощью изучения истории и развития науки; формировать умение аккуратно и грамотно выполнять математические записи.
Ход урока:
1. Вводное слово:
Математика представляет собой одну из самых важных фундаментальных наук. Слово «математика» происходит от греческого слова «матема», что означает знание. Математика – это одна из важнейших научных дисциплин. Она заставляет думать и размышлять. На протяжении столетий математика считалось образцом точности и строгости для других областей знания. Математика за 2500 лет своего существования накопила богатейший инструмент для исследования окружающего нас мира.
В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия».
Эти слова очень точно характеризуют и наше время. Мир, в котором мы живем, наполнен геометрией домов и улиц, гор и полей, творениями природы и человека. Лучше ориентироваться в нем, открывать новое, понимать красоту и мудрость окружающего мира поможет вам предмет – геометрия, который мы начинаем изучать с этого урока.
Геометрия- одна из наиболее древних наук. Первые геометрические факты найдены в вавилонских клинописных таблицах и египетских папирусах ( 3 тысячелетие до нашей эры). Название науки «геометрия» древнегреческого происхождения, оно состоит из двух древнегреческих слов: « ge» - земля и «metreo» - измеряю.
История возникновения геометрии. (Во время лекции показываются портреты учёных)
Великий немецкий математик Вильгельм Лейбниц сказал: «Кто хочет ограничиться настоящим, без знания прошлого, тот никогда его не поймет».
Заглянем в прошлое, когда зародилась наука геометрия.
Для первобытных людей важную роль играла форма окружавших их предметов. По форме и цвету они отличали съедобные грибы от несъедобных, пригодные для построек породы деревьев от тех, которые годятся лишь на дрова, вкусные орехи от горьких и т.д. Особенно вкусными казались им орехи кокосовой пальмы, которые имеют форму шара. А добывая каменную соль, люди наталкивались на кристаллы, имевшие форму куба. Так, овладевая окружающим их миром, люди знакомились с простейшими геометрическими формами.
Уже 200 тысяч лет тому назад были изготовлены орудия сравнительно правильной геометрической формы, а потом люди научились шлифовать их. Специальных названий для геометрических фигур, конечно, не было. Говорили: «такой же, как кокосовый орех» или «такой же, как соль» и т.д.
А когда люди стали строить дома из дерева, пришлось глубже разобраться в том, какую форму следует придавать стенам и крыше, какой формы должны быть бревна. Сами того не зная, люди все время занимались геометрией: женщины, изготавливая одежду, охотники, изготавливая наконечники для копий или бумеранги сложной формы, рыболовы, делая такие крючки из кости, чтобы рыба с них не срывалась.
Когда стали строить здания из камня, пришлось перетаскивать тяжелые каменные глыбы. Для этого применялись катки. И заметили, что перекатка проще, если взять кусок дерева с почти одинаковой толщиной в начале и в конце. Так люди познакомились с одним из важнейших тел – цилиндром .Скалками цилиндрической формы пользовались и женщины, раскатывая белье после стирки.
Перевозить грузы на катках было довольно тяжело, потому что сами древесные стволы весили много. Чтобы облегчить работу, стали вырезать из стволов тонкие круглые пластинки и с их помощью перетаскивать грузы. Так появилось первое колесо.
Но не только в процессе работы знакомились люди с геометрическим фигурами.
Издавна они любили украшать себя, свою одежду, свое жилище (бусинки, браслеты, кольца, украшения из драгоценных камней и металлов, роспись дворцов).
Для того, чтобы взимать налоги с земли, необходимо было знать их площадь. Гончару необходимо было знать, какую форму следует придать сосуду, чтобы в него входило то или иное количество жидкости. Астрономы, наблюдавшие за небом и дававшие на основе этих наблюдений указания, когда начинать полевые работы, должны были научиться определять положение звезд на небе. Для этого понадобилось измерять углы.
Так практическая деятельность людей привела к дальнейшему углублению знаний о формах фигур, развитию геометрии. Люди стали учиться измерять и площади, и объемы, и длины и т.д.
Древние египтяне были замечательными инженерами. До сих пор не могут до конца разгадать загадки огромных гробниц Египетских царей – Фараонов.
Пирамиды – а они построены более 5 тыс. лет назад – состоят из каменных блоков весом 15 тонн, и эти «кирпичики» так подогнаны друг к другу, что не возможно между ними протиснуть и почтовую открытку. А при строительстве использовали лишь простейшие механизмы – рычаги и катки.
«Все боится времени, но само время боится пирамид».
В Вавилоне при раскопках ученые обнаружили остатки каменных стен, высотой в несколько десятков метров, а высота Вавилонской башни достигает 82 метра.
Без математических знаний все эти сооружения невозможно было бы построить. И все же математические знания египтян и вавилонян были разрозненные и представляли собой свод правил, проверенных практикой, поэтому правила надо было зазубривать, не понимая, почему надо применять то, а не другое.
Почти все великие ученые древности и средних веков были выдающимися геометрами. Девиз древней школы был: "Не знающие геометрии не допускаются!"
Настает время привести все разрозненные знания в систему.
И наиболее удачно была изложена геометрия, как наука о свойствах геометрических фигур, греческим ученым Евклидом (III в. до н. э.) в своих книгах «Начала». Произведение состояло из 13 томов, описанная в этих книгах геометрия получила название Евклидова.
Конечно, геометрия не может быть создана одним ученым. В работе Евклид опирался на труды десятков предшественников и дополнил работу своими открытиями и изысканиями. Сотни раз книги были переписаны от руки, а когда изобрели книгопечатание, то она много раз переиздавалась на языках всех народов и стала одной из самых распространенных книг в мире.
В одной легенде говорится, что однажды египетский царь Птолемей I спросил древнегреческого математика, нет ли более короткого пути для понимания геометрии, чем тот, который описан в его знаменитом труде, содержащемся в 13 книгах. Ученый гордо ответил: " В геометрии нет царской дороги".
В течение многих веков «Начала» были единственной учебной книгой, по которым молодежь изучала геометрию. Были и другие. Но лучшими признавались «Начала» Евклида. И даже сейчас, в наше время, учебники написаны под большим влиянием «Начал» Евклида.
Несмотря на то, что содержание геометрии расширилось далеко за пределы учения о земле, она по-прежнему продолжает называться «Геометрией».
А теперь откройте учебник на странице 3 и ответьте на вопрос:
- С какими геометрическими фигурами вы уже знакомы с самого детства? ( круг, квадрат, угол, куб, и т.д.)
При изучении фигур в геометрии не берется во внимание, из какого материала они сделаны, какого цвета, в каком состоянии находятся (твердое, жидкое, газообразное). Этим занимается физика, химия, биология. Изучая геометрию, нас будут интересовать формы и размеры предметов.
Шкаф, спичечный коробок, кирпич, многоэтажный дом – прямоугольный параллелепипед.
Футбольный мяч, резиновый мяч, мыльный пузырь – шар.
Блин, солнце, луна, озеро – круг.
Красный кубик, синий кубик, зеленый кубик – куб.
Загадки
О какой фигуре идет речь в загадках?
1 загадка: Он давно знаком со мной, Каждый угол в нем прямой, 4 угла и 4 стороны Все 4 стороны одинаковой длины. (Квадрат) |
4 загадка: Он от солнца прилетает, Пробивая толщу туч И в тетрадочке бывает, А зовется просто (Луч)
|
2 загадка: Три вершины тут видны, Три угла, три стороны, - Ну, пожалуй, и довольно! - Что ты видишь? (Треугольник)
|
5 загадка: Нет углов у меня и похож на блюдце я. На тарелку и на крышку, на кольцо, на колесо. Кто же я такой, друзья? (Круг, окружность) |
3 загадка: Он и острый, да не нос, И прямой, да не вопрос, И тупой он, да не ножик, - Что еще таким быть может? (Угол) |
|
В тетради записываем число и классная работа. Выполняем схему записи в тетради.
Таким образом, Геометрическая фигура (тело) – это абстрактный предмет, в котором рассматривается только форма и размер, не обращая внимания на физические свойства.
Расположением геометрических фигур занимаются различные разделы геометрии.
Геометрические фигуры, точки которых лежат в одной плоскости, изучает планиметрия.
Геометрические фигуры, точки которых не лежат в одной плоскости, изучает стереометрия.
Мы начнем изучать геометрию с плоских фигур.
3. Основные понятия планиметрии
Конечно, геометрия дает не только представление о фигурах, их свойствах, взаимном расположении, но и учит рассуждать, ставить вопросы, анализировать, делать выводы, то есть логически мыслить.
Мы начинаем изучать планиметрию.
Как вы думаете, какие самые основные понятия планиметрии?
Даже самое большое здание складывается из маленьких кирпичей, так и сложные геометрические фигуры составляются из простейших фигур.
Конечно, самая главная - это точка.
Почти все названия геометрических фигур греческого происхождения, как и само слово геометрия. Однако эти слова вошли в русский язык не непосредственно с греческого, а через латинский язык.
Точка – результат мгновенного касания, укол
Отсюда же произошел медицинский термин пункция-прокол.
Пунктир.
Линия – льняная нить.
Линолеум – первоначально означал промасленное льняное полотно.
Как уже было сказано ранее, все названия геометрических фигур первоначально были названиями конкретных предметов, имеющих форму, более или менее близкую к форме данной фигуры.
Рассказать о чертежных инструментах, необходимых на уроках геометрии.
Попробуем использовать некоторые инструменты для решения задач.
Задачи:
Начертите прямую. Как её можно использовать?
Отметьте точки , лежащие на прямой и не лежащие на прямой.
Сколько точек пересечения могут иметь три прямые7.
На плоскости даны три точки. Сколько прямых можно провести через эти точки так, чтобы на каждой прямой лежали хотя бы две из данных точек?
Решение занимательных задач
Из 7 фигур: трех пар равнобедренных треугольников и одного квадрата составьте квадрат (Составляют квадрат)
Задачи дети решают сами, предлагают варианты ответов, потом они обсуждают.
Рефлексия.
Что нового вы узнали на уроке?
Что больше всего вам понравилось, запомнилось?
Спасибо за урок.